Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 31-38.doi: 10.13475/j.fzxb.20201202708

• Invited Column: New Flame Retardant Technology for Textile Materials • Previous Articles     Next Articles

Flame retardant and antibacterial treatments for cotton-viscose blended fabrics

ZHANG Jiaojiao1,2,3, LI Yuyang1,2,3, LIU Yun1,2,3, DONG Chaohong1,2,3(), ZHU Ping1,2,3   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    3. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2020-12-10 Revised:2021-04-24 Online:2021-07-15 Published:2021-07-22
  • Contact: DONG Chaohong E-mail:dongzhh11@163.com

Abstract:

In order to obtain both flame retardant and antibacterial properties for textiles, the composite functional agent for cotton-viscose blended fabrics was synthesized from comb-like silicon-phosphor-nitrogen synergistic flame retardant-antibacterial agent. The treatment process of cotton-viscose blended fabrics was optimized through single factor experiment, and fabric structure and performance were analyzed using infrared spectrometer, vertical combustion instrument, limit oxygen index (LOI) tester, scanning electron microscope, energy dispersive X-ray spectrometer, thermogravimetric analysis, and so on.The results show that the optimal processing parameters are 500 g/L flame retardant antibacterial agent and 150 g/L 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA), soaking at 50 ℃ for 40 min, two dip and two roll, pre-drying at 70 ℃ for 5 min, and curing at 130 ℃ for 150 s. The LOI value of the treated cotton-viscose blended fabrics was above 28%, and the after-flame time and after-glow time were both 0 s. The dense carbon layer with Si, P and N elements enriched on the surface of the fabrics after combustion was 40.16% at 800 ℃. The antibacterial rates of treated cotton-viscose blended fabrics againstEscherichia coli and Staphylococcus aureus were 99.05% and 95.52%, respectively, indicating good flame retardant and antibacterial property.

Key words: cotton-viscose blended fabrics, flame retardant finishing, antibacterial finishing, functional finishing, functional textiles

CLC Number: 

  • TS195.5

Fig.1

Equation of DSCFT react with cellulose"

Fig.2

Infrared spectrum of treated cotton-viscose blended fabrics"

Tab.1

Influence of DSCFT concentration on flame retardant property of cotton-viscose blended fabrics"

整理剂质量
浓度/(g·L-1)
质量增
加率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
300 4.62 24.3 7.69 0
350 6.71 25.2 6.22 0
400 9.02 25.6 8.81 0 14.4
450 11.57 25.7 7.97 0
500 13.80 26.3 0 0 12.1
550 16.25 26.5 0 0 12.8

Tab.2

Influence of PBTCA concentration on flame retardant property of cotton-viscose blended fabrics"

交联剂质量
浓度/(g·L-1)
质量增
加率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
0 14.94 27.2 7.45 0 -
50 15.58 28.0 0 0 10.5
100 16.77 28.1 0 0 24.0
150 16.93 28.5 0 0 13.0
200 17.63 28.8 0 0 13.0

Tab.3

Effect of treating time on flame retardant property of cotton-viscose blended fabrics"

整理
时间/min
质量增
加率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
10 17.12 27.2 0 0 10.3
20 18.12 28.2 0 0 12.4
30 18.98 28.2 0 0 12.5
40 19.18 28.7 0 0 12.6
50 24.82 29.0 0 0 13.0

Tab.4

Effect of treating temperature on flame retardant property of cotton-viscose blended fabrics"

整理
温度/℃
质量增
加率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
20 20.10 27.6 0 0 14.3
30 20.43 27.7 0 0 12.6
40 21.01 28.0 0 0 12.4
50 21.89 28.2 0 0 11.6
60 23.51 28.3 0 0 13.9

Tab.5

Influence of drying temperature on flame retardant property of cotton-viscose blended fabrics"

预烘
温度/℃
质量增
加率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
40 24.51 29.3 0 0 10.6
50 24.55 29.7 0 0 9.6
60 25.27 29.6 0 0 10.2
70 25.82 30.2 0 0 10.6
80 25.60 30.2 0 0 9.7

Tab.6

Effect of curing temperature on flame retardant property of cotton-viscose blended fabrics"

焙烘
温度/℃
质量增
加率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
120 20.13 29.3 0 0 13.0
130 21.84 29.5 0 0 11.2
140 21.15 29.7 0 0 17.1
150 21.14 29.1 0 0 14.0
160 20.07 29.2 0 0 12.9
170 19.77 29.1 0 0 13.7
180 20.26 29.1 0 0 14.9

Tab.7

Influence of drying time on flame retardant property of cotton-viscose blended fabrics"

预烘
时间/min
质量增加
率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
0 25.99 29.1 0 0 13.5
5 25.71 29.2 0 0 8.3
10 25.69 28.9 0 0 13.0
15 25.49 29.2 0 0 10.7
20 24.27 29.2 0 0 11.7

Tab.8

Effect of curing time on flame retardant property of cotton-viscose blended fabrics"

焙烘
时间/s
质量增加
率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
120 23.56 28.2 0 0 14.5
150 23.00 28.2 0 0 10.6
180 22.50 28.2 0 0 13.9
210 22.26 28.2 0 0 11.2
240 22.56 28.0 0 0 13.6

Fig.3

Combustion morphology of cotton-viscose blended fabrics (a) and DSCFT-treated cotton-viscose blended fabrics (b)"

Fig.4

EDX mapping of DSCFT-treated cotton-viscose blended fabrics before (a) and after (b) combustion"

Tab.9

Element distribution of DSCFT-treated cotton-viscose blended fabrics before and after combustion"

元素 含量/%
织物燃烧前 织物燃烧后
33.25 44.32
42.34 29.06
2.27 3.94
4.56 7.89
3.80 5.46

Fig.5

TG curves (a) and DTG curves (b) of cotton-viscose blended fabrics and treated cotton-viscose blended fabrics"

Tab.10

Thermal stability data of cotton-viscose blended fabrics and treated cottonviscose blended fabrics under N2 atmosphere "

样品 T5%/
T10%/
Tmax1/
Tmax2/
Rmax/
(%·℃-1)
800 ℃时
残炭量/%
整理前 220 286 339 - 1.23 12.16
整理后 196 238 263 286 0.74 40.16

Fig.6

Antibacterial effect of DSCFT agent. (a) Against E.coli; (b) Against S.aureus "

Fig.7

Antibacterial mechanism of treated cotton-viscose blended fabrics"

Fig.8

Breaking strength of fabrics at different concentrations"

[1] WANG S H, LIU J, SUN L, et al. Preparation of flame-retardant/dyed cotton fabrics: flame retardancy, dyeing performance and flame retardant/dyed mechanism[J]. Cellulose, 2020, 27(17):10425-10440.
doi: 10.1007/s10570-020-03469-z
[2] 刘湖滨. 纺织用品中阻燃纤维的阻燃机理及应用[J]. 印染助剂, 2020, 37(9):6-10.
LIU Hubin. Flame retardant mechanism and application of flame retardant fiber in textile products[J]. Textile Auxiliaries, 2020, 37(9):6-10.
[3] 李文楠, 陈晓燕, 张姣姣, 等. 卤胺封端聚硅氧烷对棉织物阻燃抗菌性能的研究[J]. 纤维素科学与技术, 2020(3):1-9.
LI Wennan, CHEN Xiaoyan, ZHANG Jiaojiao, et al. Flame retardant/antibacterial performance of N-halamineterminated polysiloxane on cotton fabric[J]. Journal of Cellulose Science and Technology, 2020(3):1-9.
[4] 周青青, 陈嘉毅, 祁珍明, 等. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(5):112-120.
ZHOU Qingqing, CHEN Jiayi, QI Zhenming, et al. Preparation and characterization of flame retardant and antibacterial cotton fabric[J]. Journal of Textile Research, 2020, 41(5):112-120.
[5] DONG C H, HE P S, LU Z, et al. Preparation and properties of cotton fabrics treated with a novel antimicrobial and flame retardant containing triazine and phosphorus components[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131:1079-1087.
doi: 10.1007/s10973-017-6604-x
[6] 马兴博, 朱平, 陈晓燕, 等. 含硅-磷-氮阻燃剂对棉织物拒水阻燃复合功能的研究[J]. 纤维素科学与技术, 2019, 27:59-65.
MA Xingbo, ZHU Ping, CHEN Xiaoyan, et al. Study on water-repellent and flame-retardant composite function of silicon-phosphorus-nitrogen flame retardant for cotton fabric[J]. Journal of Cellulose Science and Technology, 2019, 27:59-65.
[7] 杨海鹏, 于秋彦, 胡娜, 等. 光敏性梳状共聚物膜的制备及其表面形貌调控[J]. 功能材料, 2014, 14(45):14129-14139.
YANG Haipeng, YU Qiuyan, HU Na, et al. Preparation and controlled surface morphology of photosensitive comb copolymer films[J]. Journal of Functional Materials, 2014, 14(45):14129-14139.
[8] 吴瑾光. 近代傅里叶变换红外光谱技术及应用[M]. 北京: 科学技术文献出版社, 1994: 613-634.
WU Jinguang. Modern Fourier transform infrared spectroscopy technology and application[M]. Beijing: Scientific and Technical Documentation Press, 1994: 613-634.
[9] CHENG X W, WU Y X, HU B Q, et al. Facile preparation of an effective intumescent flame-retardant coating for cotton fabric[J]. Surface Innovations, 2020, 8:315-322.
doi: 10.1680/jsuin.20.00021
[10] CHEN Y, WANG D F, LIU S D, et al. A novel P-N-based flame retardant with multi-reactive groups for treatment of cotton fabrics[J]. Cellulose, 2020, 27:9075-9089.
doi: 10.1007/s10570-020-03387-0
[11] WAN C Y, LIU M S, HE P P, et al. A novel reactive flame retardant for cotton fabric based on a thiourea-phosphoric acid polymer[J]. Industrial Crops and Products, 2020, 154:112625.
doi: 10.1016/j.indcrop.2020.112625
[12] JIANG Z M, LI H, HE Y W, et al. Flame retardancy and thermal behavior of cotton fabrics based on a novel phosphorus-containing siloxane[J]. Applied Surface Science, 2019, 479:765-775.
doi: 10.1016/j.apsusc.2019.02.159
[13] EDWARDS B, RUDOLF S, HAUSER P, et al. Preparation, polymerization, and performance evaluation of halogen-free radiation curable flame retardant monomers for cotton substrates[J]. Industrial & Enginerring Chemistry Research, 2015, 54:577-584.
[14] LIU J, DONG C H, ZHANG Z, et al. Multifunctional flame-retarded and hydrophobic cotton fabrics modified with a cyclic phosphorus/polysiloxane copolymer[J]. Cellulose, 2020, 27:3531-3549.
doi: 10.1007/s10570-020-03016-w
[15] LI Z S, CHENG J, YANG X X, et al. Construction of antimicrobial and biocompatible cotton textile based on quaternary ammonium salt from rosin acid[J]. International Journal of Biological Macromolecules, 2020, 150:1-8.
doi: 10.1016/j.ijbiomac.2020.01.259
[16] XU D H, GAO Z Y, XU B, et al. A facile and effective flame-retardant coating for cotton fabric with alpha-aminodiphosphonate siloxane[J]. Polymer Degradation and Stability, 2020, 180:109312.
doi: 10.1016/j.polymdegradstab.2020.109312
[17] CHANG S C, SLOPEK R, CONDON B, et al. Surface Coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process[J]. Industrial & Engineering Chemistry Research, 2014, 53:3805-3812.
doi: 10.1021/ie403992x
[18] LI Z S, LIU H, XU X, et al. Surface modification of silicone elastomer with rosin acid-based quaternary ammonium salt for antimicrobial and biocompatible properties[J]. Materials & Design, 2020, 189:108493.
[19] 陈一宁, 但年华, 肖世维, 等. 季铵盐及其在抗菌材料中的应用[J]. 西部皮革, 2013(8):13-16,21.
CHEN Yining, DAN Nianhua, XIAO Shiwei, et al. Application of quaternary ammonium salt in antibacterial materials[J]. West Leather, 2013(8):13-16,21.
[20] KWSNIEWSKA D, CHEN Y L, WIECZOREK D. Biological activity of quaternary ammonium salts and their derivatives[J]. Pathogens, 2020, 9(6):459.
doi: 10.3390/pathogens9060459
[21] 蔡再生. 纤维化学与物理[M].2版. 北京: 中国纺织出版社, 2004:184-186.
CAI Zaisheng. Fiber chemistry and physics[M].2nd ed. Beijing: China Textile & Apparel Press, 2004:184-186.
[1] ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45.
[2] LI Yifei, ZHENG Min, CHANGZHU Ningzi, LI Liyan, CAO Yuanming, ZHAI Wangyi. Cotton knitted fabrics treated with two-dimensional transitional metal carbide Ti3C2Tx and property analysis [J]. Journal of Textile Research, 2021, 42(06): 120-127.
[3] LUO Xiaolei, LI Ziyan, MA Ya'nan, LIU Lin, KRUCINSKA Izabella, YAO Juming. Progress in ecological flame retardant technology for textiles [J]. Journal of Textile Research, 2021, 42(05): 193-202.
[4] LI Yonghe, QU Lingxi, XU Bi, CAI Zaisheng, GE Fengyan. One-step foam finishing of flame retardancy and three-proof finishing for bio-based polytrimethylene terephthalate fabrics [J]. Journal of Textile Research, 2021, 42(04): 8-15.
[5] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[6] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
[7] DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics [J]. Journal of Textile Research, 2021, 42(03): 130-135.
[8] MENG Lingling, WEI Qufu, YAN Zhongjie, ZHONG Zhenzhen, WANG Xiaohui, SHEN Jiayu, CHEN Hongwei. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering [J]. Journal of Textile Research, 2021, 42(03): 143-148.
[9] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[10] YANG Yaru, SHEN Xiaojun, TANG Bolin, NIU Mei. Halogen-free flame retardant finishing of ultra-high molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(11): 109-115.
[11] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[12] CHEN Wendou, ZHANG Hui, CHEN Tianyu, WU Hailiang. Self-cleaning properties of titanium dioxide modified polyester/cotton blend fabrics [J]. Journal of Textile Research, 2020, 41(07): 122-128.
[13] WANG Yating, ZHAO Jiaqi, WANG Bijia, FENG Xueling, QIAN Guochun, SUI Xiaofeng. Research progress in dyeing and functional finishing of artificial microfiber leather [J]. Journal of Textile Research, 2020, 41(07): 188-196.
[14] ZHOU Qingqing, CHEN Jiayi, QI Zhenming, CHEN Weijian, SHAO Jianzhong. Preparation and characterization of flame retardant and antibacterial cotton fabric [J]. Journal of Textile Research, 2020, 41(05): 112-120.
[15] XU Ailing, WANG Chunmei. Ammonium modification of phytic acid and flame retardant finishing of Lyocell fabric [J]. Journal of Textile Research, 2020, 41(02): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!