Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (09): 163-169.doi: 10.13475/j.fzxb.20201202807

• Machinery & Accessories • Previous Articles     Next Articles

Design of dynamic tension compensation system for warp knitting let-off based on model predictions

ZHENG Baoping, JIANG Gaoming(), XIA Fenglin, ZHANG Aijun   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2020-12-10 Revised:2021-06-08 Online:2021-09-15 Published:2021-09-27
  • Contact: JIANG Gaoming E-mail:jgm@jiangnan.edu.cn

Abstract:

In order to control the yarn dynamic tension compensation, warp knitting machines are required to control the variation of tension values in different angles in a cycle of knitting process. In view of the defects associated with controlling the let-off of warp beam, such as excessive yarn tension fluctuation and difficulty in accurate control of yarn tension with different angles in a row, a warp knitting let-off dynamic tension compensation system based on model prediction has been developed. To faclitate the yarn dynamic tension compensation control, a hardware and software platform of the system was designed, tension sensors were selected and optimized, algorithm for determining the electronic cam programming profile and the control algorithm for model prediction were created, on the basis of analyzing the movement law of the winding mechanism of the warp knitting machine. Through theoretical analysis and experimental validation, the control algorithm of model prediction is found to reduce the yarn tension peak value by at least 56% by analyzing the feedback yarn dynamic tension curve.

Key words: warp knitting machine, dynamic tension compensation, tension sensor, electronic cam, control algorithm

CLC Number: 

  • TS183.92

Fig.1

Yarn tension fluctuation curve in a weaving cycle of spindle"

Fig.2

Control principle of yarn dynamictension compensation system"

Fig.3

Yarn path of dynamic tension compensation system"

Fig.4

Upper man-machine interaction of let-off dynamic tension compensation control system"

Tab.1

Calibration and precision index of tension sensor"

砝码质量/g 输出电压/V 输出电压变化率/(V·g-1)
0 1.68
10 2.14 0.046 0
20 2.60 0.046 0
40 3.51 0.045 7
50 3.96 0.045 6
60 4.43 0.045 8
90 5.80 0.045 8
100 6.26 0.045 8

Fig.5

Quintic polynomial programming curves for angular displacement (a), angular velocity(b) and angular acceleration(c)"

Tab.2

Hardware names and functions of test platform"

硬件名称 数量 功能
HKS4 EL经编机 1台 主机结构
上位机控制系统 1套 人机交互、控制
固高运动控制卡 1套 运动控制器
多摩川伺服系统 1套 控制及执行机构
张力传感器 1套 纱线张力值测试
LMS振动测试仪 1台 采集纱线张力值曲线

Tab.3

Peak tension comparison of no dynamic compensation and dynamic compensation at different speeds"

主轴转速/
(r·min-1)
无张力补偿
峰值/N
有张力补偿
峰值/N
峰值降低
率/%
1 100 0.176 0.075 57.4
1 300 0.180 0.070 61.1
1 500 0.198 0.087 56.1

Fig.6

Yarn tension curves at different speeds"

[1] 徐云龙, 夏风林. 双针床经编机梳栉摆动对瞬时需纱量和纱线张力的影响[J]. 纺织学报, 2019, 40(6):107-111.
XU Yunlong, XIA Fenglin. Influence of guide-bar swing on instantaneous yarn demand and yarn tension on double needle bar warp knitting machine[J]. Journal of Textile Research, 2019, 40(6):107-111.
[2] KIM H K, DU H C, KIM J H. A study on correlation between warp tension and weaving condition[J]. Fibers and Polymers, 2013, 14(12):2185-2190.
doi: 10.1007/s12221-013-2185-x
[3] 张灵婕, 缪旭红, 蒋高明, 等. 经编张力补偿装置对经纱张力的影响[J]. 纺织学报, 2016, 37(11):126-129.
ZHANG Lingjie, MIAO Xuhong, JIANG Gaoming, et al. Influence of warp knitting tension compensation device on warp tension[J]. Journal of Textile Research, 2016, 37(11):126-129.
[4] 孙帅, 缪旭红, 张灵婕, 等. 经编纱线张力补偿装置的工作机制[J]. 纺织学报, 2018, 39(11):140-144.
SUN Shuai, MIAO Xuhong, ZHANG Lingjie, et al. Working mechanism of warp knitting yarn tension compensator[J]. Journal of Textile Research, 2018, 39(11):140-144.
doi: 10.1177/004051756903900203
[5] 孙帅, 缪旭红, 张琦, 等. 高速经编机上纱线张力的波动规律[J]. 纺织学报, 2020, 41(3):51-55.
SUN Shuai, MIAO Xuhong, ZHANG Qi, et al. Yarn tension fluctuation on high-speed warp knitting machine[J]. Journal of Textile Research, 2020, 41(3):51-55.
[6] METZKES K, SCHMIDT R, MARTIN J, et al. Simulation of the yarn transportation dynamics in a warp knitting machine[J]. Textile Research Journal, 2013, 83(12):1251-1262.
doi: 10.1177/0040517512470197
[7] LIU X, MIAO X H. Analysis of yarn tension based on yarn demand variation on a tricot knitting machine[J]. Textile Research Journal, 2016, 87(4):487-497.
doi: 10.1177/0040517516632473
[8] 胡瑜, 刘行, 缪旭红. 经编纱线动态张力评价指标[J]. 纺织学报, 2018, 39(2):68-72.
HU Yu, LIU Xing, MIAO Xuhong. Evaluation on dynamic tension of warp knitted yarn[J]. Journal of Textile Research, 2018, 39(2):68-72.
[9] ZHANG Jisheng, JIANG Gaoming, CONG Honglian, et al. Predictive algorithm for run-in value of warp knitting based on weave matrix[J]. Indian Journal of Fibre & Textile Research, 2018, 43:237-241.
[10] TEMIZ I, DOGAN Z. Experimental analysis of different control methods for the speed control of alternative-current servo motors[J]. International Review of Electrical Engineering-IREE, 2011, 6(1):215-222.
[11] 吴震宇, 陈琳荣, 李子军, 等. 接触式纱线张力传感器动态测量模型[J]. 纺织学报, 2013, 34(8):138-142.
WU Zhenyu, CHEN Linrong, LI Zijun, et al. Dynamic measurement model of contact tension sensor for yarn[J]. Journal of Textile Research, 2013, 34(8):138-142.
[12] PERUMAAL S, JAWAHAR N. Automated trajectory planner of industrial robot for pick-and-place task[J]. International Journal of Advanced Robotic Systems, 2013, 10(100):1-17.
doi: 10.5772/52938
[13] TAN Jieqing, XING Yan, FAN Wen, et al. Smooth orientation interpolation using parametric quintic-polynomial-based quaternion spline curve[J]. Journal of Computational & Applied Mathematics, 2018, 329:256-267.
[14] 张灵婕, 缪旭红. 纱线断裂功对经编织造性能的影响[J]. 纺织学报, 2018, 39(12):47-52.
ZHANG Lingjie, MIAO Xuhong. Influence of yarn rupture work on performance of warp knitting[J]. Journal of Textile Research, 2018, 39(12):47-52.
[1] GUO Weidong, XIA Fenglin, ZHANG Qi. Influencing factors on high speed of electronic shogging system in warp knitting machines [J]. Journal of Textile Research, 2021, 42(01): 162-166.
[2] SHEN Ruichao, CHI Xinfu, SUN Yize. Redundant actuation control strategy of positioning platform for 3-D additive printing machine [J]. Journal of Textile Research, 2020, 41(10): 164-169.
[3] SUN Shuai, MIAO Xuhong, ZHANG Qi, WANG Jin. Yarn tension fluctuation on high-speed warp knitting machine [J]. Journal of Textile Research, 2020, 41(03): 51-55.
[4] WANG Jiandong, XIA Fenglin, LI Yalin, ZHAO Yuning. Optimal sliding mode control of electronic transverse servo for comb bar of warp knitting machine [J]. Journal of Textile Research, 2020, 41(02): 143-148.
[5] ZHANG Qi, WEI Li, LUO Cheng, XIA Fenglin, JIANG Gaoming. Double jacquard control system of warp knitting machine based on dual bus architecture [J]. Journal of Textile Research, 2019, 40(07): 145-150.
[6] XU Yunlong, XIA Fenglin. Influence of guide-bar swing on instantaneous yarn demand and yarn tension on double needle bar warp knitting machine [J]. Journal of Textile Research, 2019, 40(06): 106-110.
[7] . Simulation of electronic shogging system on warp knitting machine based on Simulink [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 150-156.
[8] . Knitting motions for multi-bar warp knitting machine driven by E-cam [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 127-133.
[9] . Design of embedded electronic jacquard control system [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 135-140.
[10] . Dynamic measurement model of contact tension sensor for yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(8): 138-0.
[11] Fenglin XIA ZHANG Qi. Fuzzy PID control design of electronic yarn let-off system on knitting machine [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(8): 127-0.
[12] . Analysis of shogging motion of guide bars on warp knitting machines [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(7): 121-125.
[13] . Research on dynamic variable structure control strategy for high-speed electronic shogging motion on warp knitting machine [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(3): 121-126.
[14] Xu-Zhong SU. Design of spinning-frame electronic cam [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(12): 117-0.
[15] . Mechanical analysis of loom's roll-up mechanism and its tension control system [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(11): 141-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!