Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (05): 178-184.doi: 10.13475/j.fzxb.20201203207
• Comprehensive Review • Previous Articles Next Articles
LI Qin1, LI Xingxing1, XIE Fangfang2, ZHOU Wenlong3, CHEN Kaiyi1, LIU Yuqing1()
CLC Number:
[1] |
SHENG J, TONG S H, HE Z B, et al. Recent developments of cellulose materials for lithium-ion battery separators[J]. Cellulose, 2017, 24: 4103-4122.
doi: 10.1007/s10570-017-1421-8 |
[2] |
MA L N, BI Z J, XUE Y, et al. Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion[J]. Journal of Materials Chemistry A, 2020, 8: 5812-5842.
doi: 10.1039/C9TA12536A |
[3] | 叶代勇. 纳米纤维素的制备[J]. 化学进展, 2007(10): 1568-1575. |
YE Daiyong. Preparation of nanocellulose[J]. Progress in Chemistry, 2007(10): 1568-1575. | |
[4] | 张艳玲, 段超, 董凤霞, 等. 纳米纤维素制备及产业化研究进展[J]. 中国造纸, 2021, 40(11):79-89. |
ZHANG Yanling, DUAN Chao, DONG Fengxia, et al. Research advances in nanocellulose preparation and industrialization[J]. China Pulp & Paper, 2021, 40(11):79-89. | |
[5] | 卿彦, 易佳楠, 吴义强, 等. 纳米纤维素储能研究进展[J]. 林业科学, 2018, 54(3): 134-143. |
QING Yan, YI Jianan, WU Yiqiang, et al. Advances in application of biomass nanocellulose to green-energy storage[J]. Scientia Silvae Sinicae, 2018, 54(3): 134-143. | |
[6] | 胡雨萌, 侯敏杰, 许苗军, 等. 纤维素基一体化三明治结构超级电容器的制备及性能[J]. 林产化学与工业, 2020, 40(3): 23-30. |
HU Yumeng, HOU Minjie, XU Miaojun, et al. Preparation and properties of cellulose-based integrated sandwich structure supercapacitor[J]. Chemistry and Industry of Forest Products, 2020, 40(3): 23-30. | |
[7] | GANESAN P, THILAGAVATHI G, AYESHVARYAA T V, 等. 纤维素静电纺丝及其难题[J]. 国际纺织导报, 2014, 42(6): 26-28,30. |
GANESAN P, THILAGAVATHI G, AYESHVARYAA T V, et al. Electrospinning of cellulose and their complications-an overview[J]. Melliand China, 2014, 42(6): 26-28,30. | |
[8] | 顾陆铭, 张明祖, 何金林, 等. 纤维素静电纺丝复合膜的制备及应用[J]. 高分子材料科学与工程, 2019, 35(4): 146-152. |
GU Luming, ZHANG Mingzu, HE Jinlin, et al. Preparation and application of electrospun cellulose composite membranes[J]. Polymer Materials Science & Engineering, 2019, 35(4): 146-152. | |
[9] |
WANG S, ZHANG D L, SHAO Z Q, et al. Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery[J]. Carbohydrate Polymers, 2019, 214: 328-336.
doi: 10.1016/j.carbpol.2019.03.049 |
[10] | 韩景泉, 王思伟, 岳一莹, 等. 静电纺定向纳米纤维素-碳纳米管/聚乙烯醇复合纤维导电膜及性能[J]. 复合材料学报, 2018, 35(9): 2351-2361. |
HAN Jingquan, WANG Siwei, YUE Yiying, et al. Prepa-ration and characterization of cellulose nanocrystal-carbon nanotube/polyvinyl alcohol composite conductive membranes with oriented fibers by electrospinning[J]. Acta Materiae Compositae Sinica, 2018, 35(9): 2351-2361. | |
[11] | CHEN W H, ZHANG L P, LIU C T, et al. Electrospun flexible cellulose acetate-based separators for sodium-ion batteries with ultralong cycle stability and excellent wettability: the role of interface chemical groups[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23883-23890. |
[12] |
BHUTE M V, KONDAWAR S B. Electrospun poly (vinylidene fluoride)/cellulose acetate/AgTiO2 nanofibers polymer electrolyte membrane for lithium-ion battery[J]. Solid State Ionics, 2019, 333: 38-44.
doi: 10.1016/j.ssi.2019.01.019 |
[13] | CHEN Y, QIU L L, MA X Y, et al. Electrospun cellulose polymer nanofiber membrane with flame resistance properties for lithium-ion batteries[J]. Carbohydrate Polymers, 2020, 234: 115970. |
[14] | 朱琼琼, 周花蕾, 李文军, 等. 纤维素在炭化和活化过程中的结构变化[J]. 北京科技大学学报, 2014, 36(11): 1545-1551. |
ZHU Qiongqiong, ZHOU Hualei, LI Wenjun, et al. Structural evolution of cellulose during carbonization and activation[J]. Journal of University of Science and Technology Beijing, 2014, 36(11): 1545-1551. | |
[15] | 孔雪琳, 卢芸, 叶贵超, 等. 纳米纤维素基多层级孔道结构碳气凝胶的制备及在锂电池中的应用[J]. 高等学校化学学报, 2017, 38(11): 1941-1946. |
KONG Xuelin, LU Yun, YE Guichao, et al. Nanofibrillated cellulose derived hierarchical porous carbon aerogels: efficient anode material for lithium-ion battery[J]. Chemical Journal of Chinese Universties, 2017, 38(11): 1941-1946. | |
[16] | 陈媛, 韩雁明, 范东斌, 等. 生物质纤维素基碳气凝胶材料研究进展[J]. 林业科学, 2019, 55(10): 88-98. |
CHEN Yuan, HAN Yanming, FAN Dongbin, et al. Carbon aerogel based on biomass bellulose[J]. Scientia Silvae Sinicae, 2019, 55(10): 88-98. | |
[17] |
SHI Q Q, LIU D P, WANG Y, et al. High-performance sodium-ion battery anode via rapid microwave carbonization of natural cellulose nanofibers with graphene initiator[J]. Small, 2019, 15(41): 1902641.
doi: 10.1002/smll.201902641 |
[18] |
LI Z, LIU J, JIANG K R, et al. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors[J]. Nano Energy, 2016, 25: 161-169.
doi: 10.1016/j.nanoen.2016.04.036 |
[19] | CAO S M, FENG X, SONG Y Y, et al. In situ carbonized cellulose-based hybrid film as flexible paper anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(2): 1073-1079. |
[20] |
FAN Q C, MA C, WU L Q, et al. Preparation of cellulose acetate derived carbon nanofibers by ZnCl2 activation as a supercapacitor electrode[J]. RSC Advances, 2019, 9: 6419-6428.
doi: 10.1039/C8RA07587E |
[21] | SVINTERIKOS E, ZUBURTIKUDIS I, Al-MARZOUQI M H. Electrospun lignin-derived carbon micro-and nanofibers: a review on precursors, properties, and applications[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(37): 13868-13893. |
[22] |
SHENG J, TONG S H, HE Z B, et al. Recent developments of cellulose materials for lithium-ion battery separators[J]. Cellulose, 2017, 24: 4103-4122.
doi: 10.1007/s10570-017-1421-8 |
[23] |
QIU L, SHAO Z Q, YANG M S, et al. Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high-rate lithium-ion battery[J]. Carbohydrate Polymers, 2013, 96(1): 240-245.
doi: 10.1016/j.carbpol.2013.03.062 |
[24] |
QIU L, SHAO Z Q, XIANG P, et al. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery[J]. Carbohydrate Polymers, 2014, 110: 121-127.
doi: 10.1016/j.carbpol.2014.03.052 |
[25] |
HAN W H, XIAO Y, YIN J P, et al. Fe3O4@carbon nanofibers synthesized from cellulose acetate and application in lithium-ion battery[J]. Langmuir, 2020, 36(38): 11237-11244.
doi: 10.1021/acs.langmuir.0c01399 |
[26] | DENG L B, ROBERT J Young, IAN A Kinloch, et al. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 9983-9990. |
[27] | SIMOTWO S K, CHINNAM P R, WUNDER S L, et al. Highly durable, self-standing solid-state supercapacitor based on an ionic liquid-rich ionogel and porous carbon nanofiber electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 33749-33757. |
[28] | HAN J Q, WANG S W, ZHU S L, et al. Electrospun core-shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44624-44635. |
[29] |
CAI J, NIU H T, WANG H X, et al. High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers[J]. Journal of Power Sources, 2016, 324: 302-308.
doi: 10.1016/j.jpowsour.2016.05.070 |
[30] |
ZHENG H, CAO Q P, ZHU M N, et al. Biomass-based flexible nanoscale carbon fibers: effects of chemical structure on energy storage properties[J]. Journal of Materials Chemistry A, 2021, 9: 10120-10134.
doi: 10.1039/D1TA00317H |
[31] |
MA L, LI J L, LI Z B, et al. Ultra-stable potassium ion storage of nitrogen-doped carbon nanofiber derived from bacterial cellulose[J]. Nanomaterials, 2021, 11(5):1130.
doi: 10.3390/nano11051130 |
[1] | CHEN Feng, JI Zhongli, YU Wenhan, DONG Wuqiang, WANG Qianlin, WANG Deguo. Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters [J]. Journal of Textile Research, 2022, 43(05): 63-69. |
[2] | CHEN Mingjun, LI Haoyi, YANG Weimin. Physical model and effects of electric field on jets in polymer melt differential electrospinning [J]. Journal of Textile Research, 2022, 43(05): 70-76. |
[3] | SUN Zheru, ZHANG Qingle, HAO Lincong, CHENG Lu, XIA Xin. Preparation and performance of polyurethane/polydimethylsiloxane waterproof and moisture permeable membrane with star like topological geometry structure [J]. Journal of Textile Research, 2022, 43(04): 40-46. |
[4] | JIN Xu, LIU Fang, DU Xuan, HUA Chao, GONG Xuzhong, ZHANG Xiuqin, WANG Bin. Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation [J]. Journal of Textile Research, 2022, 43(03): 201-209. |
[5] | ZHANG Yu, LIU Laijun, LI Chaojing, JIN Qiaoqiao, XIE Qianyang, LI Peilun, WANG Fujun, WANG Lu. Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability [J]. Journal of Textile Research, 2022, 43(03): 24-30. |
[6] | ZHANG Aiqin, HAO Jiacheng, WANG Zhi, WANG Yongchao, LIU Shuqiang, DONG Hailiang, JIA Husheng, XU Bingshe. Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers [J]. Journal of Textile Research, 2022, 43(03): 50-57. |
[7] | TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70. |
[8] | ZHOU Xiaoya, MA Dinghai, HU Chengye, HONG Jianhan, LIU Yongkun, HAN Xiao, YAN Tao. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarns [J]. Journal of Textile Research, 2022, 43(02): 110-115. |
[9] | LI Jiashuang, ZHANG Liping, FU Shaohai. Preparation of bistable electrochromic ion gels and their applications for fabric display devices [J]. Journal of Textile Research, 2022, 43(02): 24-29. |
[10] | XU Shilin, YANG Shiyu, ZHANG Yaru, HU Liu, HU Yi. Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes [J]. Journal of Textile Research, 2021, 42(12): 42-42. |
[11] | JIA Lin, WANG Xixian, LI Huanyu, ZHANG Haixia, QIN Xiaohong. Preparation and properties of polyacrylonitrile/BaTiO3 composite nanofibrous filter membrane [J]. Journal of Textile Research, 2021, 42(12): 34-41. |
[12] | WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33. |
[13] | ZHOU Yuanyuan, ZHENG Yuming, WU Xiaoqiong, SHAO Zaidong. Research progress of performance enhancement methods for electrospun nanofiber-based photocatalyst [J]. Journal of Textile Research, 2021, 42(11): 179-186. |
[14] | WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30. |
[15] | QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45. |
|