Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (04): 180-186.doi: 10.13475/j.fzxb.20201203407

• Comprehensive Review • Previous Articles     Next Articles

Progress in microfluidics preparation technology of micro/nano cellulose materials

LI Xingxing, LI Qin, YUE Tiantian, LIU Yuqing()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2020-12-14 Revised:2021-12-01 Online:2022-04-15 Published:2022-04-20
  • Contact: LIU Yuqing E-mail:shliuyq@163.com

Abstract:

In order to gain in-depth understanding of the research status of micro/nano cellulose materials prepared by microfluidic technology, and to promote its application in various fields, the use of cellulose and nanocellulose as raw materials based on microfluidic technology was reviewed. The latest research progress was reviewed and discussed concentrating on the preparations of cellulose microspheres and microcapsules, nanocellulose microspheres and microcapsules, fiber filaments, films, microtubules, and hydrogels combined with rapid freezing method, in-situ interface complex method and other technologies. Aiming at the challenges in the preparation of micro/nano cellulose materials by microfluidic technology, a corresponding strategy is proposed to tackle material defects, to enhance the ability for micro-channel construction, and to explore technology combination solutions. Development prospects were also scrutinized to provide references for the preparation of micro/nano cellulose materials by microfluidic technology in the fields of material science, tissue engineering and regenerative medicine.

Key words: micro/nano cellulose material, nano cellulose fiber, microfluidic technology, controlled extrusion, laminar effect, cellulose microsphere, cellulose microcapsule

CLC Number: 

  • TQ341

Fig.1

Schematic of preparation of PCAMs"

Fig.2

Schematic of description of MFFD"

Fig.3

Schematic of in-situ interface complexation"

Fig.4

Schematic of preparation of hybrid fibers"

Fig.5

Schematic of microfluidic focusing device"

Fig.6

Schematic of cellulose film orientation"

Fig.7

Schematic of hydrogel sheets"

[1] MANZ A, HARRISON J, VERPOORTE J, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems-capillary electrophoresis on a chip[J]. Journal of Chromatography A, 1992, 593(1/2): 253-258.
doi: 10.1016/0021-9673(92)80293-4
[2] DITTRICH P S, MANZ A. Lab-on-a-chip: microfluidics in drug discovery[J]. Nature Reviews Drug Discovery, 2006, 12(3): 210-218.
[3] CHANG L, HUANG H, CHOU Y, et al. Direct fabrication of nanofiber scaffolds in pillar-based microfluidic device by using electrospinning and picosecond laser pulses[J]. Microelectronic Engineering, 2017, 177(6): 52-58.
doi: 10.1016/j.mee.2017.01.036
[4] YU Y, SHANG L, GUO J, et al. Design of capillary microfluidics for spinning cell-laden microfibers[J]. Nature Protocols, 2018, 13(10): 2557-2579.
doi: 10.1038/s41596-018-0051-4
[5] SUH Y K, KANG S. A review on mixing in micro-fluidics[J]. Micromachines, 2010, 1(3):82-111.
doi: 10.3390/mi1030082
[6] 李冉冉, 胡静, 李兴兴, 等. 微流控TPU/Cs复合中空纤维的制备及研究[J]. 现代丝绸科学与技术, 2021, 36(4): 5-7.
LI Ranran, HU Jing, LI Xingxing, et al. Preparation and research of microfluidic TPU/Cs composite hollow fibers[J]. Modern Silk Science & Technology, 2021, 36(4): 5-7.
[7] YE C H, SIDNEY T, HU K, et al. Cellulose nanocrystal microcapsules as tunable cages for nano- and microparticles[J]. ACS Nano, 2015, 9(11): 10887-10895.
doi: 10.1021/acsnano.5b03905
[8] HOU Y Z, GUAN Q F, XIA J, et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface[J]. ACS Nano, 2021, 15(1): 1310-1320.
doi: 10.1021/acsnano.0c08574
[9] ZHU M W, WANG Y L. Anisotropic, transparent films with aligned cellulose nanofibers[J]. Advanced Materials, 2017, 29(6): 1606284-1606291.
doi: 10.1002/adma.201606284
[10] RAO L T, REWATKAR P, SATISH K D, et al. Performance optimization of microfluidic paper fuel-cell with varying cellulose fiber papers as absorbent pad[J]. International Journal of Energy Research, 2020, 44(4): 3893-3904.
doi: 10.1002/er.5188
[11] IMAI S. Thin-film diaphragms of cellulose nanofiber fabricated using high-concentration polar dispersion for application to MEMS actuators[J]. Sensors and Actuators A: Physical, 2019, 15(2): 134-143.
[12] YIN N, STILWELL M D, SANTOS T M A, et al. Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro[J]. Acta Biomaterialia, 2015, 12(1): 129-138.
doi: 10.1016/j.actbio.2014.10.019
[13] QI H, MA R, SHI C, et al. Novel low-cost carboxymethyl cellulose microspheres with excellent fertilizer absorbency and release behavior for saline-alkali soil[J]. International Journal of Biological Macromolecules, 2019, 15(6): 412-419.
[14] BAEK S, PARK Y. Highly-porous uniformly-sized amidoxime-functionalized cellulose beads prepared by microfluidics with N-methylmorpholine N-oxide[J]. Cellulose, 2021, 28(4): 5401-5419.
doi: 10.1007/s10570-021-03872-0
[15] ZHANG M, GUO W, REN M, et al. Fabrication of porous cellulose microspheres with controllable structures by microfluidic and flash freezing method[J]. Materials Letters, 2020, 262(3): 127193-127202.
doi: 10.1016/j.matlet.2019.127193
[16] CARRICK C, LARSSON P A, BRISMAR H, et al. Native and functionalized micrometre-sized cellulose capsules prepared by microfluidic flow focusing[J]. RSC Advances, 2014, 4(37): 19061-19067.
doi: 10.1039/C3RA47803C
[17] YU J, HUANG T R, LIM Z H, et al. Production of hollow bacterial cellulose microspheres using microfluidics to form an injectable porous scaffold for wound healing[J]. Advanced Healthcare Materials, 2016, 5(23): 2983-2992.
doi: 10.1002/adhm.201600898
[18] MARTINA P, BINELLI M R, STUDART A R, et al. Self-grown bacterial cellulose capsules made through emulsion templating[J]. ACS Biomaterials Science & Engineering, 2021, 7 (7): 3221-3228.
[19] LEVIN D, SAEM S, OSORIO D A, et al. Green templating of ultra-porous cross-linked cellulose nanocrystal microparticles[J]. Chemistry of Materials, 2018, 30(11): 8040-8051.
doi: 10.1021/acs.chemmater.8b03858
[20] KAUFMAN G, MUKHOPADHYAY S, ROKHLENKO Y, et al. Highly stiff yet elastic microcapsules incorporating cellulose nanofibrils[J]. Soft Matter, 2017, 13(6): 2733-2737.
doi: 10.1039/C7SM00092H
[21] CAI Y, GENG L, CHEN S, et al. Hierarchical assembly of nanocellulose into filaments by flow-assisted alignment and interfacial complexation: conquering the conflicts between strength and toughness[J]. ACS Applied Materials & Interfaces, 2020, 28(6): 32090-32098.
[22] GENG L H, CAI Y H, LU L, et al. highly strong and conductive carbon fibers originated from bioinspired lignin/nanocellulose precursors obtained by flow-assisted alignment and in situ interfacial complexation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(6): 2591-2599.
[23] GAO Q, WANG J, LIU J, et al. High mechanical performance based on the alignment of cellulose nanocrystal/chitosan composite filaments through continuous coaxial wet spinning[J]. Cellulose, 2021, 28(6): 7995-8008.
doi: 10.1007/s10570-021-04009-z
[24] LIU Y, WU P. Bioinspired hierarchical liquid-metacrystal fibers for chiral optics and advanced textiles[J]. Advanced Functional Materials, 2020, 30(5): 2002193.
doi: 10.1002/adfm.202002193
[25] LU L, FAN S, GENG L, et al. Low-loss light-guiding, strong silk generated by a bioinspired microfluidic chip[J]. Chemical Engineering Journal, 2020, 405(1): 1385-8947.
[26] LU L, LI L, FAN S, et al. Strong silk fibers containing cellulose nanofibers generated by a bioinspired microfluidic chip[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14765-14774.
[27] LU L, FAN S, GENG L, et al. Flow analysis of regenerated silk fibroin/cellulose nanofiber suspensions via a bioinspired microfluidic chip[J]. Adv Mater Technol, 2021, 6(10): 2100124.
doi: 10.1002/admt.202100124
[28] PARK J S, PARK C W, HAN S Y. Preparation and properties of wet-spun microcomposite filaments from various CNFs and alginate[J]. Polymers, 2021, 13(11): 1709-1727.
doi: 10.3390/polym13111709
[29] NECHYPORCHUK O, KARL M O, KRISHNE G V, et al. Continuous assembly of cellulose nanofibrils and nanocrystals into strong macrofibers through microfluidic spinning[J]. Advanced Materials Technologies, 2018, 7 (8): 1022-1027.
[30] HAKANSSON K M, FALL A B, LUNDELL F, et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments[J]. Nature Communications, 2014, 2(5):4018-4037.
[31] WEI L Y, DENG N P, WANG X X. Flexible ordered MnS@CNC/carbon nanofibers membrane based on microfluidic spinning technique as interlayer for stable lithium-metal battery[J]. Journal of Membrane Science, 2021, 637(7): 119615-119636.
doi: 10.1016/j.memsci.2021.119615
[32] WANG S, LI T, CHEN C, et al. Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers[J]. Advanced Functional Materials, 2018, 28(24): 1707491.
doi: 10.1002/adfm.201707491
[33] CHEN C H, ZHU C L, HUANG Y, et al. Regenerated bacterial cellulose microfluidic column for glycoproteins separation[J]. Carbohydrate Polymers, 2016, 137(6): 271-276.
doi: 10.1016/j.carbpol.2015.10.081
[34] KHUN N, ALIZADEHGIASHI M, GEVORKIAN A, et al. Temperature-mediated microfluidic extrusion of structurally anisotropic hydrogels[J]. Advanced Materials Technologies, 2019, 4 (6): 1800627.
doi: 10.1002/admt.201800627
[35] ZHANG C T, ZHANG T, DAI B B, et al. Rapid fabrication of composite hydrogel microfibers for weavable and sustainable antibacterial applications[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6534-6542.
[1] LEI Caihong, YU Linshuang, ZHU Hailin, ZHENG Tao, CHEN Jianyong. Hemostasis properties of silk fibroin materials under different types of hydrolysis [J]. Journal of Textile Research, 2022, 43(04): 15-19.
[2] ZHANG Tao, WANG Fuping, CHEN Guobao, WU Jiyu, PANG Yani, CHEN Zhongmin. Preparation and performance of chitosan-based antibacterial gel [J]. Journal of Textile Research, 2022, 43(03): 71-77.
[3] CHEN Zihan, YAO Yongbo, SHENG Junlu, YAN Zhiyong, ZHANG Yumei, WANG Huaping. Preparation and properties of cellulose/calcium alginate blend fiber [J]. Journal of Textile Research, 2021, 42(12): 15-20.
[4] . Predicting stability of solvent in dope-dyed Lyocell solution based on molecular simulation [J]. , 0, (): 0-0.
[5] JIN Hong, ZHANG Yue, ZHANG Yumei, WANG Huaping. Predicting stability of solvent in dope-dyed Lyocell solution based on molecular simulation [J]. Journal of Textile Research, 2021, 42(10): 1-7.
[6] . Recycling general situation of waste textiles [J]. , 0, (): 0-0.
[7] WANG Shaopeng, WU Baozhai, HE Zhou. Technology progress in recycling and reuse of waste textiles [J]. Journal of Textile Research, 2021, 42(08): 34-40.
[8] XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24.
[9] YUAN Wei, YAO Yongbo, ZHANG Yumei, WANG Huaping. Alkaline enzyme treatment process for preparation of Lyocell cellulose pulp [J]. Journal of Textile Research, 2020, 41(07): 1-8.
[10] ZHONG Hongrong, FANG Yan, BAO Hong, WU Tingfang, ZHANG Xiaoning, XU Shui, ZHU Yong. Preparation and properties of silk fibroin based bilayer dressing materials [J]. Journal of Textile Research, 2020, 41(02): 13-19.
[11] CHENG Tong, YAO Yongbo, CHEN Zhongli, JIN Hong, WU Kaijian, WANG Lejun, LIU Yining, ZHANG Yumei. Preparation of flame retardant aromatic polysulfonamide/cellulose fibers with N-methylmorpholine-N-oxide monohydrate as solvent [J]. Journal of Textile Research, 2019, 40(07): 1-76.
[12] . Preparation of wool keratin solution with Ionic liquid [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 59-62.
[13] . Research progress in cellulose fiber preparation with alkali/urea aqueous solution at low temperature [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 121-0.
[14] . Rheology and wettability of chitosan /hydroxypropyl cellulose blend materials [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(5): 25-29.
[15] . Aldehydes filtering effect of tips of lit cigarettes made of bamboo charcoal fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(12): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!