Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (10): 172-179.doi: 10.13475/j.fzxb.20201203808

• Comprehensive Review • Previous Articles     Next Articles

Progress in preparation and application of aromatic polyamide separation membrane

LAI Xing1, WANG Chun1,2(), XIAO Changfa2, WANG Liming1, XIN Binjie1   

  1. 1. School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
    2. State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University,Tianjin 300387, China
  • Received:2020-12-14 Revised:2021-05-31 Online:2021-10-15 Published:2021-10-29
  • Contact: WANG Chun E-mail:bcmdgy@163.com

Abstract:

In order to better understand the research status of aromatic polyamide separation membrane materials which can be used in special separation field, this paper reviewed the research progress of porous membrane materials with aromatic polyamide as membrane-forming polymer at home and abroad in recent years, and reviewed the preparation methods and characteristics of aromatic polyamide porous membrane at present stage. In addition, it was analyzed that the application of aromatic polyamide porous membrane is suitable for wastewater treatment, air filtration, lithium ion battery separator and fiber reinforced membrane. Finally, the shortcomings of the porous membrane of aromatic polyamide were spelt out, and the application prospect and development direction of the porous membrane of aromatic polyamide were prospected, so as to provide reference for the realization of low energy consumption, high efficiency preparation and high value utilization of aromatic polyamide porous membrane.

Key words: aromatic polyamide, porous membrane, wastewater treatment, air filtration, lithium ion battery separator, fiber reinforced membrane

CLC Number: 

  • TQ028.8

Tab.1

Preparation methods and main properties of PPTA and PMIA porous membrane"

制备方法 膜形式 膜基材 溶剂 主要特点 参考文献
相转化法 平板膜 PPTA H2SO4 操作简单,膜结构易调控 [11]
去质子化法 纳米纤维膜 PPTA DMSO-KOH 制备条件温和,原纤化程度高,
但仅适用于实验室研究
[12]
干-湿法纺丝 中空纳米纤维膜 PMIA DMAc 生产效率高,膜自支撑性好 [13]
静电纺丝法 纳米纤维膜 PMIA DMAc 纤维尺寸可控,但制备效率低,调控因素多,
较难以实现规模化
[14]
同质纤维增强 纤维增强型中空纤维膜 PMIA DMAc 界面结合高,力学性能高,使用寿命长 [15]

Fig.1

Cross-sectional morphology of fiber reinforced hollow fiber membrane. (a) Fiber filament reinforced; (b) Fiber braided tube reinforced"

Fig.2

Application of aromatic polyamide porous membrane"

[1] 马千里, 李长胜, 田明. 对位芳香族聚酰胺纤维[M]. 北京: 国防工业出版社, 2018: 1-8.
MA Qianli, LI Changsheng, TIAN Ming. Para-oriented aromatic polyamide fiber[M]. Beijing: National Defense Industry Press, 2018: 1-8.
[2] WU Y J, SEFERIS J C, LORENTZ V. Evaluations of an aramid fiber in nonwoven processes for honeycomb applications[J]. Journal of Applied Polymer Science, 2002, 86(5):1149-1156.
doi: 10.1002/(ISSN)1097-4628
[3] GU H. Research on thermal properties of Nomex/viscose FR fibre blended fabric[J]. Materials & Design, 2009, 30(10):4324-4327.
doi: 10.1016/j.matdes.2009.04.012
[4] DU S M, WANG W B, YAN Y, et al. A facile synthetic route to poly(p-phenylene terephthalamide) with dual functional groups[J]. Chemical Communications, 2014, 50(69):9929-9931.
doi: 10.1039/C4CC02366H
[5] LIN C E, WANG J, ZHOU M Y, et al. Poly(m-phenylene isophthalamide) (PMIA): a potential polymer for breaking through the selectivity-permeability trade-off for ultrafiltration membranes[J]. Journal of Membrane Science, 2016, 518:72-78.
doi: 10.1016/j.memsci.2016.06.042
[6] RAO Y, WADDON A J, FARRIS R J, et al. Structure-property relation in poly(p-phenylene terephthalamide) (PPTA) fibers[J]. Polymer, 2001, 42(13):5937-5946.
doi: 10.1016/S0032-3861(00)00905-8
[7] WANG T, ZHAO C W, LI P, et al. Effect of non-solvent additives on the morphology and separation performance of poly(m-phenylene isophthalamide) (PMIA) hollow fiber nanofiltration membrane[J]. Desalination, 2015, 365:293-307.
doi: 10.1016/j.desal.2015.03.016
[8] LI Y F, MA X M, DENG N P, et al. Electrospun SiO2/PMIA nanofiber membranes with higher ionic conductivity for high temperature resistance lithium-ion batteries[J]. Fibers and Polymers, 2017, 18(2):212-220.
doi: 10.1007/s12221-017-6772-0
[9] MA H Q, CHEN G K, ZHANG J N, et al. Facile fabrication of core-shell polyelectrolyte complexes nanofibers based on electric field induced phase separation[J]. Polymer, 2017, 110:80-86.
doi: 10.1016/j.polymer.2016.12.062
[10] MEDEIROS E S, GLENN G M, KLAMCZYNSKI A P, et al. Solution blow spinning: a new method to produce micro-and nanofibers from polymer solutions[J]. Journal of Applied Polymer Science, 2009, 113(4):2322-2330.
doi: 10.1002/app.v113:4
[11] 王纯, 肖长发, 黄庆林. 对位芳香族聚酰胺多孔膜制备及性能研究[J]. 天津工业大学学报, 2014, 33(4):7-10.
WANG Chun, XIAO Changfa, HUANG Qinglin. Preparation and properties of para-aromatic polyamide porous membrane[J]. Journal of Tiangong Polytechnic University, 2014, 33(4):7-10.
[12] LUO J J, ZHANG M Y, YANG B, et al. Fabrication and characterization of differentiated aramid nanofibers and transparent films[J]. Applied Nanoscience, 2019, 9(5):631-645.
doi: 10.1007/s13204-018-0722-z
[13] 权全, 柴俪洪, 肖长发, 等. PMIA中空纤维膜在MBR系统中污染类型和处理城市污水效果研究[J]. 膜科学与技术, 2017, 37(2):96-103.
QUAN Quan, CHAI Lihong, XIAO Changfa, et al. A study on pollution types and treatment effect of PMIA hollow fiber membrane in MBR system[J]. Membrane Science and Technology, 2017, 37(2):96-103.
[14] 肖科. 间位芳纶纳米纤维基锂电池隔膜的制备及其性能研究[D]. 上海: 东华大学, 2016: 7-43.
XIAO Ke. Preparation and properties of m-aramid nanofiber based lithium battery separator[D]. Shanghai: Donghua University, 2016: 7-43.
[15] 柴俪洪. PMIA中空纤维膜污染机制及其MBR工艺处理污水研究[D]. 天津: 天津工业大学, 2017: 5-36.
CHAI Lihong. A sudy on PMIA hollow fiber membrane fouling mechanism and MBR process for wastewater treatment[D]. Tianjin: Tiangong University, 2017: 5-36.
[16] GUILLEN G R, PAN Y J, LI M H, et al. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review[J]. Industrial & Engineering Chemistry Research, 2011, 50(7):3798-3817.
doi: 10.1021/ie101928r
[17] JIANG Q L, ZHANG K S. Preparation and characterization of high-flux poly(m-phenylene isophthalamide) (PMIA) hollow fiber ultrafiltration membrane[J]. Desalination and Water Treatment, 2019, 138:80-90.
doi: 10.5004/dwt
[18] WANG C, XIAO C F, HUANG Q L, et al. A study on structure and properties of poly(p-phenylene terephthamide) hybrid porous membranes[J]. Journal of Membrane Science, 2015, 474:132-139.
doi: 10.1016/j.memsci.2014.09.055
[19] YANG M, CAO K Q, SUI L, et al. Dispersions of aramid nanofibers: a new nanoscale building block[J]. Acs Nano, 2011, 5(9):6945-6954.
doi: 10.1021/nn2014003
[20] BURCH R R, SWEENY W, SCHMIDT H W, et al. Preparation of aromatic polyamide polyanions: a novel processing strategy for aromatic polyamides[J]. Macromolecules, 1990, 23(4):1065-1072.
doi: 10.1021/ma00206a026
[21] TAKAYANAGI M, KATAYOSE T. N-substituted poly(p-phenylene terephthalamide)[J]. Journal of Polymer Science Part A, 1981, 19(5):1133-1145.
[22] YUAN S S, SWARTENBROEKX J, LI Y, et al. Facile synjournal of Kevlar nanofibrous membranes via regeneration of hydrogen bonds for organic solvent nanofiltration[J]. Journal of Membrane Science, 2019, 573:612-620.
doi: 10.1016/j.memsci.2018.12.047
[23] YANG B, WANG L, ZHANG M Y, et al. Fabrication, applications, and prospects of aramid nanofiber[J]. Advanced Functional Materials, 2020, 30(22):2000186.
doi: 10.1002/adfm.v30.22
[24] 陈明星. 间位芳香聚酰胺分离膜制备及性能研究[D]. 天津: 天津工业大学, 2018: 4-49.
CHEN Mingxing. Preparation and properties of m-aromatic polyamide membrane[D]. Tianjin: Tiangong University, 2018: 4-49.
[25] 王纯. 对位芳香族聚酰胺多孔膜制备及性能研究[D]. 天津: 天津工业大学, 2016: 8-86.
WANG Chun. Preparation and properties of para-aromatic polyamide porous membrane[D]. Tianjin: Tiangong University, 2016: 8-86.
[26] LALIA B S, BURRIEZA E G, ARAFAT H A, et al. Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation[J]. Journal of Membrane Science, 2013, 428:104-115.
doi: 10.1016/j.memsci.2012.10.061
[27] CHEN Y, QIU L L, MA X Y, et al. Electrospun PMIA and PVDF-HFP composite nanofibrous membranes with two different structures for improved lithium-ion battery separators[J]. Solid State Ionics, 2020, 347:115253-115261.
doi: 10.1016/j.ssi.2020.115253
[28] LIU J, LI P L, LI Y D, et al. Preparation of PET threads reinforced PVDF hollow fiber membrane[J]. Desalination, 2009, 249(2):453-457.
doi: 10.1016/j.desal.2008.11.010
[29] FAN Z W, XIAO C F, LIU H L, et al. Structure design and performance study on braid-reinforced cellulose acetate hollow fiber membranes[J]. Journal of Membrane Science, 2015, 486:248-256.
doi: 10.1016/j.memsci.2015.03.066
[30] 柴俪洪, 肖长发, 权全, 等. 同质增强型PMIA中空纤维膜污染及其MBR工艺处理城市生活污水[J]. 化工学报, 2016, 67(9):3954-3964.
CHAI Lihong, XIAO Changfa, QUAN Quan, et al. Pollution of homogeneous enhanced PMIA hollow fiber membrane and its MBR process for municipal sewage treatment[J]. Journal of Chemical Industry and Engineering, 2016, 67(9):3954-3964.
[31] YANG H C, HOU J W, CHEN V, et al. Janus membranes: exploring duality for advanced separa-tion[J]. Angewandte Chemie International Edition, 2016, 55(43):13398-13407.
doi: 10.1002/anie.v55.43
[32] PENDERGAST M M, HOEK E M. A review of water treatment membrane nanotechnologies[J]. Energy and Environmental Science, 2011, 4(6):1946-1971.
doi: 10.1039/c0ee00541j
[33] MAAB H, NUNES S P. Porous polyoxadiazole membranes for harsh environment[J]. Journal of Membrane Science, 2013, 445:127-134.
doi: 10.1016/j.memsci.2013.05.038
[34] WANG T, ZHAO C W, LI P, et al. Fabrication of novel poly(m-phenylene isophthalamide) hollow fiber nanofiltration membrane for effective removal of trace amount perfluorooctane sulfonate from water[J]. Journal of Membrane Science, 2015, 477:74-85.
doi: 10.1016/j.memsci.2014.12.038
[35] ZHAO C W, YANG B, HAN J L, et al. Preparation of carboxylic multiwalled-carbon-nanotube-modified poly(m-phenylene isophthalamide) hollow fiber nanofiltration membranes with improved performance and application for dye removal[J]. Applied Surface Science, 2018, 453:502-512.
doi: 10.1016/j.apsusc.2018.05.149
[36] WANG T, HE X P, LI Y, et al. Novel poly(piperazine-amide) (PA) nanofiltration membrane based poly(m-phenylene isophthalamide) (PMIA) hollow fiber substrate for treatment of dye solutions[J]. Chemical Engineering Journal, 2018, 351:1013-1026.
doi: 10.1016/j.cej.2018.06.165
[37] LI H B, SHI W Y, ZHANG Y F, et al. Preparation of hydrophilic PVDF/PPTA blend membranes by in situ polycondensation and its application in the treatment of landfill leachate[J]. Applied Surface Science, 2015, 346:134-146.
doi: 10.1016/j.apsusc.2015.04.027
[38] FENG Y N, HAN G, ZHANG L L, et al. Rheology and phase inversion behavior of polyphenylene-sulfone(PPSU) and sulfonated PPSU for membrane formation[J]. Polymer, 2016, 99:72-82.
doi: 10.1016/j.polymer.2016.06.064
[39] WANG L, CUI L, LIU Y, et al. Electrospun polyimide nanofiber-coated polyimide nonwoven fabric for hot gas filtration[J]. Adsorption Science & Technology, 2018, 36(9/10):1734-1743.
[40] TIAN X, ZHANG F L, XIN B J, et al. Electrospun meta-aramid/polysulfone-amide nanocomposite membranes for the filtration of industrial PM2.5 parti-cles[J]. Nanotechnology, 2020, 31(5):55702-55714.
doi: 10.1088/1361-6528/ab442c
[41] ZHANG S C, LIU H, YIN X, et al. Tailoring mechanically robust poly(m-phenylene isophthalamide) nanofiber/nets for ultrathin high-efficiency air filter[J]. Scientific Reports, 2017, 7(1):40550-40561.
doi: 10.1038/srep40550
[42] EVARTS E C. Lithium batteries: to the limits of lithium[J]. Nature, 2015, 526:S93-S95.
doi: 10.1038/526S93a
[43] 赵颖会, 顾迎春, 胡斐, 等. 芳香族聚酰胺纳米纤维复合材料研究进展[J]. 纺织学报, 2020, 41(1):184-189.
ZHAO Yinghui, GU Yingchun, HU Fei, et al. Research progress of aromatic polyamide nanofiber Compo-sites[J]. Journal of Textile Research, 2020, 41(1):184-189.
[44] WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion bat-tery[J]. Journal of Power Sources, 2012, 208(24), 210-224.
doi: 10.1016/j.jpowsour.2012.02.038
[45] FANG L F, SHI J L, LI H, et al. Construction of porous coating layer and electrochemical performances of the corresponding modified polyethylene separators for lithium ion batteries[J]. Journal of Applied Polymer Science, 2014, 131(21):41036-41045.
[46] LEE T, LEE Y J, RYOU M H, et al. A facile approach to prepare biomimetic composite separators toward safety-enhanced lithium secondary batteries[J]. RSC Advances, 2015, 5(49):39392-39398.
doi: 10.1039/C5RA01061F
[47] YANG P, ZHANG P, SHI C, et al. The functional separator coated with core-shell structured silica-poly(methyl methacrylate) sub-microspheres for lithium-ion batteries[J]. Journal of Membrane Science, 2015, 474:148-155.
doi: 10.1016/j.memsci.2014.09.047
[48] LIANG X X, YANG Y, JIN X, et al. Polyethylene oxide-coated electrospun polyimide fibrous seperator for high-performance lithium-ion battery[J]. Journal of Materials Science & Technology, 2016, 32(3):200-206.
[49] ZHAI Y Y, XIAO K, YU J Y, et al. Fabrication of hierarchical structured SiO2/polyetherimide-polyurethane nanofibrous separators with high performance for lithium ion batteries[J]. Electrochimica Acta, 2015, 154:219-226.
doi: 10.1016/j.electacta.2014.12.102
[50] HAO X M, ZHU J, JIANG X, et al. Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators[J]. Nano Letters, 2016, 16(5):2981-2987.
doi: 10.1021/acs.nanolett.5b05133
[51] LU C, QI W, LI L, et al. Electrochemical performance and thermal property of electrospun PPESK/PVDF/PPESK composite separator for lithium-ion battery[J]. Journal of Applied Electrochemistry, 2013, 43(7):711-720.
doi: 10.1007/s10800-013-0561-2
[52] KANG W M, DENG N P, MA X M, et al. A thermostability gel polymer electrolyte with electrospun nanofiber separator of organic F-doped poly-m-phenyleneisophthalamide for lithium-ion battery[J]. Electrochimica Acta, 2016, 216:276-286.
doi: 10.1016/j.electacta.2016.09.035
[53] CAI H P, YANG G P, MENG Z H, et al. Water-dispersed poly(p-Phenylene Terephthamide) boosting nano-Al2O3-coated polyethylene separator with enhanced thermal stability and ion diffusion for lithium-ion batteries[J]. Polymers, 2019, 11(8):1362-1375.
doi: 10.3390/polym11081362
[1] . Progress in preparation and application of aromatic polyamide separation membrane [J]. , 2021, 42(10): 0-0.
[2] CHEN Yali, ZHAO Guomeng, REN Lipei, PAN Luqi, CHEN Bei, XIAO Xingfang, XU Weilin. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials [J]. Journal of Textile Research, 2021, 42(08): 115-121.
[3] ZHANG Yuhan, SHEN Guodong, FAN Wei, SUN Runjun. Preparation of aramid fiber supported BiOBr composite materials and its photocatalytic degradation of dyeing wastewater [J]. Journal of Textile Research, 2021, 42(08): 128-134.
[4] ZHANG Tingting, XU Kexin, JIN Mengtian, GE Shijie, GAO Guohong, CAI Yixiao, WANG Huaping. Recent progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and it's application in water treatment [J]. Journal of Textile Research, 2021, 42(07): 175-183.
[5] CHEN Junliang, WU Jing, WANG Huaping, YANG Jianping. Research prospect of fibrous microplastics removal in aquatic environment [J]. Journal of Textile Research, 2021, 42(06): 18-25.
[6] TIAN Liqiang, LIANG Min, LONG Kang, CHEN Xiuqing. Synthesis of nanoscale iron supported on expanded graphite for removal of chromium (Ⅵ) and dyes from water [J]. Journal of Textile Research, 2021, 42(06): 133-139.
[7] JIANG Wenwen, MO Huilin, FAN Tingyue, ZHAO Ziyao, REN Yu, WANG Chunxia, ZHANG Wei, ZANG Chuanfeng. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue [J]. Journal of Textile Research, 2021, 42(04): 107-113.
[8] LOU Yaya, WANG Jing, DONG Yanchao, WANG Chunmei. Preparation and decolorization of rayon based zeoliticimidazolate framework functional material [J]. Journal of Textile Research, 2021, 42(02): 142-147.
[9] HE Xuemei, MAO Haiyan, CAI Lu. Adsorption performance of chitosan based hybrid aerogel on reactive dyes [J]. Journal of Textile Research, 2021, 42(02): 148-155.
[10] CHENG Lüzhu, WANG Zongqian, WANG Dengfeng, SHEN Jiakun, LI Changlong. Preparation of highly hollow biomass-based activated carbon fiber and its adsorption property to methylene blue [J]. Journal of Textile Research, 2021, 42(02): 129-134.
[11] XIA Yun, LÜ Wangyang, CHEN Wenxing. Catalytic degradation of dye by metal phthalocyanine/multi-walled carbon nanotubes under simulated solar light [J]. Journal of Textile Research, 2020, 41(12): 94-101.
[12] SONG Yingqi, PAN Jiahao, WU Liguang, WANG Ting, DONG Chunying. Fabrication of photocatalytic floating spheres for degradation of methyl-orange under illumination of visible light [J]. Journal of Textile Research, 2020, 41(12): 102-110.
[13] YU Yucong, SHI Xiaolong, LIU Lin, YAO Juming. Recent progress in super wettable textiles for oil-water separation [J]. Journal of Textile Research, 2020, 41(11): 189-196.
[14] HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, LIU Junjie, HUANG Chen, DING Yike, HONG Hui. Research progress in preparation of hierarchically structured air filter materials by electrospinning [J]. Journal of Textile Research, 2020, 41(06): 174-182.
[15] QIAN Yifan, ZHOU Tang, ZHANG Liying, LIU Wanshuang, FENG Quan. Preparation of polyacrylonitrile/cellulose acetate/TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 41(05): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!