Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (05): 130-135.doi: 10.13475/j.fzxb.20201205406

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation flame retardant polyester fabric modified with halogen-free ferric oxide and its property

XUE Baoxia1,2, SHI Yiran1, ZHANG Feng1, QIN Ruihong1, NIU Mei1,3()   

  1. 1. College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
    2. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi 030032, China
    3. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • Received:2020-12-21 Revised:2022-02-19 Online:2022-05-15 Published:2022-05-30
  • Contact: NIU Mei E-mail:niumei@tyut.edu.cn

Abstract:

In order to achieve the "halogen-free, low smoke, low toxicity" flame retardant of polyester fabric, the polyethylene terephthalate (PET) fiber was modified with the nano iron oxide (Fe2O3) using the melt spinning method. Fe2O3/PET fabric with different structures were constructed through weaving, so as to explore the internal relationship between fabric structure and flame retardant properties. The results show that the comprehensive flame retardant properties of Fe2O3/PET fabric with plain weave structure were significantly improved. Compared with the pure PET fabric, the ignition time was prolonged 132.4%. The heat release rate and the total heat release reduced by 30.1%, 19.7%. The total smoke production and smoke release rate have decreased by 43.5% and 44.1%, respectively. The Fe2O3/PET twill fabric played an obvious role in inhibiting flame spread. The research proved that, under the same fabric thickness, smaller fabric structure coefficient caused greater tightness. Fabric burning led to the dense layer of charcoal, which interrupted the combustion reaction and thus achieving double effect for flame retardant and smoke suppression.

Key words: iron oxide, polyester fabric, flame retardant fabric, smoke suppression, fabric structure

CLC Number: 

  • TS156

Tab.1

Various parameters of different fabric samples"

试样编号 纱线种类 组织结构 密度/(根·(10 cm)-1) 厚度/mm 面密度/
(g·m-2)
紧度/% 组织
系数
经向 纬向 经向 纬向
S-0 PET长丝 平纹 319 141±3 0.50 290.4±3 55.3±0.2 43.8±0.1 74.9±0.1 1
S-1 Fe2O3改性PET长丝 平纹 319 110±3 0.46 274.3±3 55.5±0.2 43.8±0.1 75.0±0.1 1
S-2 Fe2O3改性PET长丝 斜纹 319 170±3 0.50 297.1±3 55.5±0.1 54.2±0.1 79.6±0.5 2
S-3 Fe2O3改性PET长丝 经二重 319 156±3 0.46 295.6±3 55.5±0.1 50.6±0.5 78.0±0.5 2

Fig.1

SEM images of Fe2O3 modified PET fiber. (a) Longitudinal (×1 000); (b) Cross section (×2 000)"

Tab.2

Cone calorimetric test parameters of each sample"

试样
编号
TTI/s pk-HRR/(kW·m-2) THR/(MJ·m-2) TSP/m2
S-0 37 364.49±5 11.7±1 2.3
S-1 86 254.79±3 9.4±1 1.3
S-2 73 278.43±5 11.6±1 1.3
S-3 87 260.73±5 9.2±1 1.4

Fig.2

THR (a) and pk-HRR (b) curves of each sample"

Fig.3

SPR (a) and TSP (b) curves of each sample"

Tab.3

Limit oxygen index and vertical combustion test parameters of each sample"

试样
编号
LOI
值/%
续燃时
间/s
损毁长
度/cm
熔滴
数量
是否引燃
脱脂棉
S-0 20.4 47.1 27.0 15
S-1 24.1 17.9 17.7 7
S-2 23.3 13.1 17.0 2
S-3 22.8 42.2 19.4 11

Fig.4

SEM images of char residue microstructure of S-0 and S-1 fabric(×1 000)"

Fig.5

FT-IR spectra of char residue of S-1 and S-0 fabric"

[1] 顾伟文, 王文庆, 魏丽菲, 等. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(7): 1-10.
GU Weiwen, WANG Wenqing, WEI Lifei, et al. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate)[J]. Journal of Textile Research, 2021, 42(7): 1-10.
doi: 10.1177/004051757204200101
[2] 朱子谦. 浅谈高分子材料的应用和研究进展[J]. 中国科技投资, 2018(13): 284, 286.
ZHU Ziqian. Talking about the application and research progress of polymer materials[J]. China Venture Capital, 2018(13): 284, 286.
[3] 马利婵, 王娇娜, 李丽, 等. 静电纺空气过滤用PET/CTS抗菌复合纳米纤维膜的制备[J]. 高分子学报, 2015 (2): 221-227.
MA Lichan, WANG Jiaona, LI Li, et al. Preparation of PET/CTS antibacterial composites nanofiber membranes used for air filter by electrospinning[J]. Acta Polymerica Sinica, 2015 (2): 221-227.
[4] 张榕, 朱新生, 周舜华, 等. 涤纶阻燃技术研究进展[J]. 合成纤维, 2006, 35(8): 9-12.
ZHANG Rong, ZHU Xinsheng, ZHOU Shunhua, et al. Research progress and application of flame retardant polyester fibers[J]. Synthetic Fiber in China, 2006, 35(8): 9-12.
[5] 周颖雨, 王锐, 靳高岭, 等. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(3): 181-189, 196.
ZHOU Yingyu, WANG Rui, JIN Gaoling, et al. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics[J]. Journal of Textile Research, 2021, 42(3): 181-189, 196.
doi: 10.1177/004051757204200310
[6] 梁科文, 王锐, 朱志国, 等. 三聚氰胺氰尿酸盐对阻燃PET的影响[J]. 纺织学报, 2012, 33(11): 20-26.
LIANG Kewen, WANG Rui, ZHU Zhiguo, et al. Influence of melamine cyanurate on flame retardancy of poly(ethylene terephthalate)[J]. Journal of Textile Research, 2012, 33(11): 20-26.
[7] 刘磊. 铁系化合物对膨胀型阻燃环氧树脂复合材料燃烧性能影响的作用机理[D]. 青岛: 青岛科技大学, 2015: 44-52.
LIU Lei. Effect of different iron series compounds on combustion performance of intumescent flame retardant epoxy composites[D]. Qingdao: Qingdao University of Science and Technology, 2015:44-52.
[8] 丛佳玉, 张世锋, 张求慧. Fe2O3/聚磷酸铵对聚氨酯木粉复合发泡材料的阻燃抑烟性能[J]. 林业工程学报, 2018, 3(3): 95-101.
CONG Jiayu, ZHANG Shifeng, ZHANG Qiuhui. Incorporation of Fe2O3 and ammonium polyphosphate to foamed wood-polyurethane composites for smoke suppression and flame resistance[J]. China Forestry Science and Technology, 2018, 3(3): 95-101.
[9] 夏俊, 王良芥, 罗和安. 阻燃剂的发展现状和开发动向[J]. 应用化工, 2005, 34(1): 1-4.
XIA jun, WANG Liangjie, LUO Hean. Present status and developing tendency of flame retardant[J]. Applied Chemical Industry, 2005, 34(1): 1-4.
[10] 彭云. Fe2O3协效新型含磷有机硅(PDPSI)对PET及纤维的阻燃、抑烟研究[D]. 太原: 太原理工大学, 2019: 42-44.
PENG Yun. Study on flame retardant and smoke suppression of PET and fiber by Fe2O3 synergistic new phosphorus-containing silicone (PDPSI)[D]. Taiyuan: Taiyuan University of Technology, 2019:42-44.
[11] TANG K P M, KAN C W, FAN J T, et al. Flammability, comfort and mechanical properties of a novel fabric structure: plant-structured fabric[J]. Cellulose, 2017, 24(9), 4017-4031.
doi: 10.1007/s10570-017-1372-0
[12] OZCAN G, DAYIOGLU H, CANDAN C. Effect of gray fabric properties on flame resistance of knitted fabric[J]. Textile Research Journal, 2003, 73(10): 883-891.
doi: 10.1177/004051750307301006
[13] 李为义, 张求慧, 赵广杰. 阻燃处理木质壁纸的结构与性能表征[J]. 北京林业大学学报, 2016, 38(7): 91-97.
LI Weiyi, ZHANG Qiuhui, ZHAO Guangjie. Structure and properties characterization of the flame retardant wood wallpaper[J]. Journal of Beijing Forestry University, 2016, 38(7): 91-97.
[14] WEI Y, YANG W J, TAWIAH B, et al. Synthesis of anhydrous manganese hypophosphite microtubes for simultaneous flame retardant and mechanical enhancement on poly(lactic acid)[J]. Composites Science and Technology, 2018, 164: 44-50.
doi: 10.1016/j.compscitech.2018.05.023
[15] XING W, YANG W, YANG W, et al. Functionalized carbon nanotubes with phosphorus-and nitrogen-containing agents: effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites[J]. Acs Applied Materials & Interfaces, 2016, 8(39): 26266-26274.
[16] PRAGER F H, CABOS H P. Fire-gas hazards in rail traffic[J]. Fire & Materials, 1994, 18(3):131-149.
[17] CARTY P, CREIGHTON J R, WHITE S. TG and flammability studies on polymer blends containing acrylonitrile-butadiene-styrene and chlorinated poly(vinyl chloride)[J]. Journal of Thermal Analysis & Calorimetry, 2001, 63(3):679-687.
[18] CARTY P, WHITE S. The effect of temperature on char formation in polymer blends: an explanation of the role of the smoke suppressant FeOOH acting in ABS/CPVC polymer blends[J]. Polymer Degradation & Stability, 2002, 75(1):173-184.
[19] 周晓东, 马凤云, 刘景梅, 等. 包覆型Fe基纳米催化剂制备及对低阶煤直接液化的影响[J]. 煤炭学报, 2018, 43(10): 2895-2902.
ZHOU Xiaodong, MA Fengyun, LIU Jingmei, et al. Effect of coated Fe2O3 nanocatalysts on direct liquefaction of lower-rank coal[J]. Journal of China Coal Society, 2018, 43(10): 2895-2902.
[1] WANG Yanping, CHEN Xiaoqian, XIA Wei, FU Jiajia, GAO Weidong, WANG Hongbo, ARTUR Cavaco-Paulo. Application of cutinase in polyester surface modification [J]. Journal of Textile Research, 2022, 43(05): 136-142.
[2] HE Yang, ZHANG Ruiping, HE Yong, FAN Aimin. Dyeing properties of laser modified polyester fabrics with disperse dyes [J]. Journal of Textile Research, 2022, 43(04): 102-109.
[3] HE Yingting, LI Min, WANG Ruifeng, WANG Chunxia, FU Shaohai. Dyeing process for polyester fabrics with continuous pad dyeing method [J]. Journal of Textile Research, 2022, 43(03): 110-115.
[4] FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43.
[5] XIE Ailing, YUE Yuhan, AI Xin, WANG Yahui, WANG Yirong, CHEN Xinpeng, CHEN Guoqiang, XING Tieling. Preparation of superhydrophobic polyester fabric modified by tea polyphenols for oil-water separation [J]. Journal of Textile Research, 2022, 43(02): 162-170.
[6] YANG Tengxiang, SHEN Guodong, QIAN Lijiang, HU Huajun, MAO Xue, SUN Runjun. External electric field polarized Ag-BaTiO3/polyester fabric and its photocatalytic properties [J]. Journal of Textile Research, 2022, 43(02): 189-195.
[7] LIU Xinhua, LIU Hailong, FANG Yinchun, YAN Peng, HOU Guangkai. Preparation and properties of flame retardant polyester/cotton blended fabrics by layer-by-layer assemblying polyethylenimine/phytic acid [J]. Journal of Textile Research, 2021, 42(11): 103-109.
[8] ZHU Lanfang, BAI Jie, ZHOU Yincheng, HOU Chengwei. Effect of ultrasonic treatment on 4,4'-diaminodiphenylmethane in polyurethane coating of polyester fabric [J]. Journal of Textile Research, 2021, 42(11): 124-128.
[9] PU Dandan, FU Yaqin. Preparation and sound insulation performance of polyester fabric/polyvinyl chloride-hollow glass microspheres composites [J]. Journal of Textile Research, 2021, 42(11): 77-83.
[10] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
[11] MENG Lingling, WEI Qufu, YAN Zhongjie, ZHONG Zhenzhen, WANG Xiaohui, SHEN Jiayu, CHEN Hongwei. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering [J]. Journal of Textile Research, 2021, 42(03): 143-148.
[12] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[13] WANG Yang, CHENG Chunzu, JIANG Li'na, REN Yuanlin, GUO Yingbin. Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating [J]. Journal of Textile Research, 2020, 41(10): 107-115.
[14] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[15] LIU Muli, YUAN Li, YANG Yali, LIU Junping, GONG Xue, YAN Yuchen. Influence of fabric weaves on characteristics of colored patterns in color-woven fabrics [J]. Journal of Textile Research, 2020, 41(09): 45-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!