Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 193-199.doi: 10.13475/j.fzxb.20201207107

• Comprehensive Review • Previous Articles     Next Articles

Research progress in functional dressings for scar inhibition in wound healing

SONG Ziyu1, ZHAO Juyang1, QIN Yue1, HUANG Xiaorui1, GAO Jing1,2(), WANG Lu1,2   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Biomedical Textile Materials and Technology in Textile Industry, Donghua University, Shanghai 201620, China
  • Received:2020-12-28 Revised:2021-05-31 Online:2022-07-15 Published:2022-07-29
  • Contact: GAO Jing E-mail:gao2001jing@dhu.edu.cn

Abstract:

In order to achieve scarless cutaneous wound healing, a summary of the relevant researches at home and abroad on the effect of functional dressings on inhibiting scarring was reviewed and summarized. The wound healing process was reviewed in the first place, concentrating on the factors affecting scar formation, namely external environment and internal biological signal regulation, the performance requirements of scar-inhibiting dressings under different physiological environments and demands at different stages of wound healing. At the three stages of inflammation, proliferation and remodeling, functional dressings inhibit scarring by reducing inflammatory response, regulating signal transduction and promoting tissue regeneration, respectively. Studies have shown that scar formation is a dynamic, continuous and complex process involving inflammatory cells, keratinocytes, fibroblasts and various growth factors. Therefore, in order to achieve better effect of functional dressings used to suppress scars, it is necessary to pay attention to the research of new drug delivery systems and the optimal design of dressings structures.

Key words: functional dressing, scar inhibition, inflammatory response, fibroblast, TGF-β/Smad signal, extracellular matrix, collagen

CLC Number: 

  • TS101.4

Fig.1

Influence mechanism of inflammatory response on scar formation"

Fig.2

TGF-β/Smad signaling pathway"

Tab.1

Measures to inhibit scars in each stage of wound healing"

愈合阶段 目的 相关因素 实现方式 参考文献
炎症期 降低炎症反应 炎症细胞多 抗菌 [4,15-19]
氧气少 抗氧化 [20-21]
增殖期 调控信号传导 角质形成细胞与成纤维细胞间的信号通路 保持创面湿润 [23-26,29,31]
TGF-β/Smad信号通路 阻断信号传导 [1,7,32-36]
重塑期 促进组织再生 成纤维细胞增殖分化 控制分化 [38-40]
ECM变化 增加胶原酶活性,控制Ⅰ/Ⅲ型胶原合成 [37,41-44,49-50]
血管和皮肤附属物缺失 促进血管生成和正常皮肤组织再生 [45-48]
[1] PROFYRIS C, TZIOTZIOS C, DOVALE I. Cutaneous scarring: pathophysiology, molecular mechanisms, and scar reduction therapeutics: part I: the molecular basis of scar formation[J]. Journal of the American Academy of Dermatology, 2012, 66(1): 1-10.
doi: 10.1016/j.jaad.2011.05.055
[2] KONDO T, ISHIDA Y. Molecular pathology of wound healing[J]. Forensic Science International, 2010, 203(1-3): 93-98.
doi: 10.1016/j.forsciint.2010.07.004
[3] COENTRO J Q, PUGLIESE E, HANLEY G, et al. Current and upcoming therapies to modulate skin scarring and fibrosis[J]. Advanced Drug Delivery Reviews, 2019, 146: 37-59.
doi: 10.1016/j.addr.2018.08.009
[4] PRATSINIS H, MAVROGONATOU E, KLETSAS D. Scarless wound healing: from development to senesc-ence[J]. Advanced Drug Delivery Reviews, 2019, 146: 325-343.
doi: 10.1016/j.addr.2018.04.011
[5] ALMINE J F, WISE S G, WEISS A S. Elastin signaling in wound repair[J]. Birth defects research Part C: Embryo Today : Reviews, 2012, 96(3): 248-257.
doi: 10.1002/bdrc.21016
[6] ZHAO Yuqian, LI Xueyong, XU Xiaoli, et al. Lumican alleviates hypertrophic scarring by suppressing integrin-FAK signaling[J]. Biochemical and Biophysical Research Communications, 2016, 480(2): 153-159.
doi: S0006-291X(16)31633-3 pmid: 27693693
[7] 李玉林. 病理学[M]. 8版. 北京: 人民卫生出版社, 2013: 27-43.
LI Yulin. Pathology[M]. 8th ed. Beijing: People's Medical Publishing House, 2013: 27-43.
[8] LORDEN E R, MILLER K J, IBRAHIM M, et al. Biostable electrospun microfibrous scaffolds mitigate hypertrophic scar contraction in an immune-competent murine model[J]. Acta Biomaterialia, 2016, 32: 100-109.
doi: 10.1016/j.actbio.2015.12.025
[9] LORDEN E R, MILLER K J, BASHIROV L, et al. Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold[J]. Biomaterials, 2015, 43: 61-70.
doi: 10.1016/j.biomaterials.2014.12.003
[10] CHENG Liying, SUN Xiaoming, HU Changmin, et al. In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membr-anes[J]. Acta Biomaterialia, 2013, 9(12): 9461-9473.
doi: 10.1016/j.actbio.2013.07.040 pmid: 23938200
[11] HU Xiaolong, LI Na, TAO Ke, et al. Effects of integrin ανβ3 on differentiation and collagen synthesis inducedby connective tissue growth factor in human hypertrophic scar fibroblasts[J]. International Journal of Molecular Medicine, 2014, 34(5): 1323-1334.
doi: 10.3892/ijmm.2014.1912 pmid: 25174803
[12] MONSTREY S, MIDDELKOOP E, JEROEN J, et al. Updated scar management practical guidelines: non-invasive and invasive measures[J]. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2014, 67(8): 1017-1025.
[13] LIN Shiqi, QUAN Guilan, HOU Ailin, et al. Strategy for hypertrophic scar therapy: improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array[J]. Journal of Controlled Release, 2019, 306: 69-82.
doi: S0168-3659(19)30302-5 pmid: 31145948
[14] DAVID C Y, SHARON W T C, XU Chenjie. Polymeric biomaterials for management of pathological scarring[J]. ACS Applied Polymer Materials, 2019, 1: 612-624.
doi: 10.1021/acsapm.8b00203
[15] WILGUS Traci A. Inflammation as an orchestrator of cutaneous scar formation: a review of the literature[J]. Plastic and aesthetic research, 2020, 7: 54.
[16] TRACI A W, VALERIE K B, KATHLEEN L T, et al. The Impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing[J]. The American Journal of Pathology, 2004, 165(3): 753-761.
doi: 10.1016/S0002-9440(10)63338-X
[17] WU Qianli, FOURCAUDOT A B, YAMANE K, et al. Exacerbated and prolonged inflammation impairs wound healing and increases scarring[J]. Wound Repair and Regeneration, 2016, 24(1): 26-34.
doi: 10.1111/wrr.12381
[18] 邓雨萌, 雷霞. 炎性反应在瘢痕疙瘩发生发展中的作用及机制研究[J]. 中国美容医学, 2020, 29(4): 167-169.
DENG Yumeng, LEI Xia. The role and mechanism of inflammatory responses in the development of keloid[J]. Chinese Journal of Aesthetic Medicine, 2020, 29(4): 167-169.
[19] SADIYA A, ANHA A, ALAM M S, et al. Development of antimicrobial and scar preventive chitosan hydrogel wound dressingsmicrobial and scar preventive chitosan hydrogel wound dressings[J]. International Journal of Pharmaceutics, 2016, 508(1/2): 92-101.
doi: 10.1016/j.ijpharm.2016.05.013
[20] VIVEK K P, GUFRAN A, SIDDH N U, et al. Nano-fibrous scaffold with curcumin for anti-scar wound healing[J]. International Journal of Pharmaceutics, 2020. DOI: 10.1016/j.ijpharm.2020.119858.
doi: 10.1016/j.ijpharm.2020.119858
[21] 王佳琪, 王国栋, 吴洋. 活性氧在创伤愈合中作用的研究[J]. 现代生物医学进展, 2013, 13(31): 6194-6196.
WANG Jiaqi, WANG Guodong, WU Yang. The review on role of reactive oxygen species in wound healing[J]. Progress in Modern Biomedicine, 2013, 13(31): 6194-6196.
[22] DESMOULIERE A, BONTÉ F, LAVERDET B, et al. Fibroblasts and myofibroblasts in wound healing[J]. Clinical, Cosmetic and Investigational Dermatology, 2014, 7: 301-311.
[23] XU Wei, HONG Seokjong, ZEITCHEK M, et al. Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin[J]. The Journal of Investigative Dermatology, 2015, 135(3): 796-806.
doi: 10.1038/jid.2014.477
[24] ZHANG Dongmei, CAI Guanke, MUKHERJEE S, et al. Elastic, persistently moisture-retentive, and wearable biomimetic film inspired by fetal scarless repair for promoting skin wound healing[J]. ACS applied Materials & Interfaces, 2020, 12(5): 5542-5556.
[25] ZHAO Jingling, YU Jianxing, XU Yingbin, et al. Epidermal HMGB1 activates dermal fibroblasts and causes hypertrophic scar formation in reduced hydration[J]. The Journal of Investigative Dermatology, 2018, 138(11): 2322-2332.
doi: 10.1016/j.jid.2018.04.036
[26] ZHAO Jingling, ZHONG Aimei, FRIEDRICH E, et al. S100A12 induced in the epidermis by reduced hydration activates dermal fibroblasts and causes dermal fibrosis[J]. Journal of Investigative Dermatology, 2017, 137(3): 650-659.
doi: S0022-202X(16)32638-0 pmid: 27840235
[27] 陈晓洁, 吕爱凤, 高晶, 等. 功能敷料的“伤口湿润环境愈合”理论与实践[J]. 生物医学工程学进展, 2013, 34(1): 31-34.
CHEN Xiaojie, LV Aifeng, GAO Jing, et al. The theory and practice of moisture wound healing on functional dressings[J]. Progress in Biomedical Engineering, 2013, 34(1): 31-34.
[28] 何贵东, 李政, 华嘉川, 等. 水凝胶在医学领域应用研究进展[J]. 化工新型材料, 2017, 45(5): 223-225.
HE Guidong, LI Zheng, HUA Jiachuan, et al. Research and application progress of hydrogel in medical field[J]. New Chemical Materials, 2017, 45(5): 223-225.
[29] HUANG Xin, ZHANG Yaqing, ZHANG Xiangmei, et al. Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing[J]. Materials Science & Engineering C, 2013, 33(8): 4816-4824.
[30] DINESH K S, ALOK R R. Biomedical applications of chitin, chitosan, and their derivatives[J]. Journal of Macromolecular Science: Part C, 2000, 40(1): 69-83.
doi: 10.1081/MC-100100579
[31] WANG Dong, ZHANG Nihui, MENG Guolong, et al. The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing[J]. Colloids and Surfaces B: Biointerfaces, 2020. DOI: 10.1016/j.colsurfb.2020.111191.
doi: 10.1016/j.colsurfb.2020.111191.
[32] ZHANG Tao, WANG Xiaofeng, WANG Zhengcai, et al. Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation[J]. Biomedicine & Pharmacotherapy, 2020. DOI: 10.1016/j.biopha.2020.110287.
doi: 10.1016/j.biopha.2020.110287.
[33] WANG Le, YANG Junchuan, RAN Bei, et al. Small molecular TGF-β1-inhibitor-loaded electrospun fibrous scaffolds for preventing hypertrophic scars[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32545-32553.
[34] PADMANABAN M, SATHIYAMOORTHY S, RAMYA M, et al. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions[J]. Journal of Ginseng Research, 2018, 42(2): 123-132.
doi: 10.1016/j.jgr.2017.01.008
[35] CUI Wenguo, CHENG Liying, HU Changmin, et al. Electrospun poly(L-Lactide) fiber with ginsenoside Rg3 for inhibiting scar hyperplasia of skin[J]. PLOS ONE, 2013. DOI: 10.1371/journal.pone.0068771.
doi: 10.1371/journal.pone.0068771.
[36] FARAZ C, TAHEREH M, ALI H R, et al. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing[J]. Acta Biomaterialia, 2020, 113: 144-163.
doi: 10.1016/j.actbio.2020.06.031
[37] OLIVEIRA G V, HAWKINS H K, CHINKES D, et al. Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens[J]. International Wound Journal, 2009, 6(6): 445-451.
doi: 10.1111/j.1742-481X.2009.00638.x
[38] PRIYA G, LESLIE T, SNEHAL S, et al. CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing[J]. Matrix Biology, 2018, 75: 314-330.
[39] LI Haichang, DUANN P, LIN Peihui, et al. MG53 promotes wound healing and reduces scar formation by facilitating cell membrane repair and controlling myofibroblast differentiation[J]. Biophysical Journal, 2016, 110(3): 589.
[40] LI Haichang, DUANN P, LIN Peihui, et al. Modulation of wound healing and scar formation by MG53 protein-mediated cell membrane repair[J]. Journal of Biological Chemistry, 2015, 290(40): 24592-24603.
doi: 10.1074/jbc.M115.680074 pmid: 26306047
[41] 刘青武, 何秀娟, 张金超, 等. 细胞外基质在皮肤组织创面修复中的研究进展[J]. 医学研究杂志, 2019, 48(9): 21-24.
LIU Qingwu, HE Xiujuan, ZHANG Jinchao, et al. Research progress of extracellular matrix in skin tissue wound repair[J]. Journal of Medical Research, 2019, 48(9): 21-24.
[42] 王成, 荣艳华, 沈余明, 等. 正常皮肤与增生性瘢痕中Ⅰ型和Ⅲ型胶原的含量与比例[J]. 山东大学学报(医学版), 2016, 54(11): 64-67.
WANG Cheng, RONG Yanhua, SHEN Yuming, et al. Contents and ratios of typeⅠand type Ⅲ collagens in normal skin and hypertrophic scar in people of different ages[J]. Journal of Shandong University(Health Sciences), 2016, 54(11): 64-67.
[43] YALMAN V, NELISA T L. Development of humic acid and alginate-based wound dressing and evaluation on inflammation[J]. Materials Technology, 2019, 34(12): 705-717.
doi: 10.1080/10667857.2019.1619961
[44] COELHO N M, WANG A, MCCULLOCH C A. Discoidin domain receptor 1 interactions with myosin motors contribute to collagen remodeling and tissue fibrosis[J]. Biochimica et Biophysica Acta: Molecular Cell Research, 2019. DOI: 10.1016/j.bbamcr.2019.07.005.
doi: 10.1016/j.bbamcr.2019.07.005.
[45] ZHANG Nihui, GAO Tao, WANG Yao, et al. Modulating cationicity of chitosan hydrogel to prevent hypertrophic scar formation during wound healing[J]. International Journal of Biological Macromolecules, 2020, 154: 835-843.
doi: S0141-8130(20)32065-1 pmid: 32194120
[46] CHEN Xi, PENG Lihua, LI Ni, et al. The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo[J]. Journal of Ethnopharmacology, 2012, 139(3): 721-727.
doi: 10.1016/j.jep.2011.11.035
[47] CHEN Xi, PENG Lihua, SHAN Yinghui, et al. Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery[J]. International Journal of Pharmaceutics, 2013, 447(1/2): 171-181.
doi: 10.1016/j.ijpharm.2013.02.054
[48] SHAN Yinghui, PENG Lihua, LIU Xin, et al. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound[J]. International Journal of Pharmaceutics, 2015, 479(2): 291-301.
doi: 10.1016/j.ijpharm.2014.12.067 pmid: 25556053
[49] SHI Hongxue, LIN Cai, LIN Beibei, et al. The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo[J]. PLOS ONE, 2013. DOI: 10.1371/journal.pone.0059966.
doi: 10.1371/journal.pone.0059966.
[50] CHENG Liying, SUN Xiaoming, ZHAO Xin, et al. Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars[J]. Biomaterials, 2016, 83: 169-181.
doi: 10.1016/j.biomaterials.2016.01.002 pmid: 26774564
[1] ZHAO Xinzhe, WANG Shaoxia, GAO Jing, WANG Lu. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes [J]. Journal of Textile Research, 2021, 42(04): 33-41.
[2] YUE Chengfei, DING Changkun, LI Lu, CHENG Bowen. Carbodiimide/hydroxysuccinimide crosslinking modification and properties of collagen fibers [J]. Journal of Textile Research, 2020, 41(03): 1-7.
[3] LÜ Tingting, AN Ying, LI Haoyi, LIU Yujian, JIAO Zhiwei. Research progress of electrospun animal protein nanofibers [J]. Journal of Textile Research, 2019, 40(12): 140-145.
[4] . Preparation and properties of collagen/high-molecular weight chitosan composite fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 8-13.
[5] . Performance of aligned polylactic acid/collagen nanofibrous scaffolds [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 8-13.
[6] . Composition and structure of skin dander included in cashmere [J]. Journal of Textile Research, 2015, 36(06): 24-29.
[7] . Study on propreties of regenerated cattle skin collagen fiber [J]. Journal of Textile Research, 2015, 36(04): 1-6.
[8] . Surface modification of PET by acrylic acid and collagen [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 152-0.
[9] XU Yunhui;HUANG Chen;CHEN Yuyue;LIN Hong. Structure of cotton fiber coated with collagen [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(6): 1-4.
[10] WANG Xuejuan;TANG Yi;WU Weiyu;XU Jianjun;YE Guangdou. Research on collagenPPVA composite f ibers with glutaraldehyde as cross2linker [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(11): 13-16.
[11] YAO Li-rong;LIN Hong;CHEN Yu-yue. Properties of the collagen fiber and its application [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(9): 105-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .