Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 193-199.doi: 10.13475/j.fzxb.20201207107
• Comprehensive Review • Previous Articles Next Articles
SONG Ziyu1, ZHAO Juyang1, QIN Yue1, HUANG Xiaorui1, GAO Jing1,2(), WANG Lu1,2
CLC Number:
[1] |
PROFYRIS C, TZIOTZIOS C, DOVALE I. Cutaneous scarring: pathophysiology, molecular mechanisms, and scar reduction therapeutics: part I: the molecular basis of scar formation[J]. Journal of the American Academy of Dermatology, 2012, 66(1): 1-10.
doi: 10.1016/j.jaad.2011.05.055 |
[2] |
KONDO T, ISHIDA Y. Molecular pathology of wound healing[J]. Forensic Science International, 2010, 203(1-3): 93-98.
doi: 10.1016/j.forsciint.2010.07.004 |
[3] |
COENTRO J Q, PUGLIESE E, HANLEY G, et al. Current and upcoming therapies to modulate skin scarring and fibrosis[J]. Advanced Drug Delivery Reviews, 2019, 146: 37-59.
doi: 10.1016/j.addr.2018.08.009 |
[4] |
PRATSINIS H, MAVROGONATOU E, KLETSAS D. Scarless wound healing: from development to senesc-ence[J]. Advanced Drug Delivery Reviews, 2019, 146: 325-343.
doi: 10.1016/j.addr.2018.04.011 |
[5] |
ALMINE J F, WISE S G, WEISS A S. Elastin signaling in wound repair[J]. Birth defects research Part C: Embryo Today : Reviews, 2012, 96(3): 248-257.
doi: 10.1002/bdrc.21016 |
[6] |
ZHAO Yuqian, LI Xueyong, XU Xiaoli, et al. Lumican alleviates hypertrophic scarring by suppressing integrin-FAK signaling[J]. Biochemical and Biophysical Research Communications, 2016, 480(2): 153-159.
doi: S0006-291X(16)31633-3 pmid: 27693693 |
[7] | 李玉林. 病理学[M]. 8版. 北京: 人民卫生出版社, 2013: 27-43. |
LI Yulin. Pathology[M]. 8th ed. Beijing: People's Medical Publishing House, 2013: 27-43. | |
[8] |
LORDEN E R, MILLER K J, IBRAHIM M, et al. Biostable electrospun microfibrous scaffolds mitigate hypertrophic scar contraction in an immune-competent murine model[J]. Acta Biomaterialia, 2016, 32: 100-109.
doi: 10.1016/j.actbio.2015.12.025 |
[9] |
LORDEN E R, MILLER K J, BASHIROV L, et al. Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold[J]. Biomaterials, 2015, 43: 61-70.
doi: 10.1016/j.biomaterials.2014.12.003 |
[10] |
CHENG Liying, SUN Xiaoming, HU Changmin, et al. In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membr-anes[J]. Acta Biomaterialia, 2013, 9(12): 9461-9473.
doi: 10.1016/j.actbio.2013.07.040 pmid: 23938200 |
[11] |
HU Xiaolong, LI Na, TAO Ke, et al. Effects of integrin ανβ3 on differentiation and collagen synthesis inducedby connective tissue growth factor in human hypertrophic scar fibroblasts[J]. International Journal of Molecular Medicine, 2014, 34(5): 1323-1334.
doi: 10.3892/ijmm.2014.1912 pmid: 25174803 |
[12] | MONSTREY S, MIDDELKOOP E, JEROEN J, et al. Updated scar management practical guidelines: non-invasive and invasive measures[J]. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2014, 67(8): 1017-1025. |
[13] |
LIN Shiqi, QUAN Guilan, HOU Ailin, et al. Strategy for hypertrophic scar therapy: improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array[J]. Journal of Controlled Release, 2019, 306: 69-82.
doi: S0168-3659(19)30302-5 pmid: 31145948 |
[14] |
DAVID C Y, SHARON W T C, XU Chenjie. Polymeric biomaterials for management of pathological scarring[J]. ACS Applied Polymer Materials, 2019, 1: 612-624.
doi: 10.1021/acsapm.8b00203 |
[15] | WILGUS Traci A. Inflammation as an orchestrator of cutaneous scar formation: a review of the literature[J]. Plastic and aesthetic research, 2020, 7: 54. |
[16] |
TRACI A W, VALERIE K B, KATHLEEN L T, et al. The Impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing[J]. The American Journal of Pathology, 2004, 165(3): 753-761.
doi: 10.1016/S0002-9440(10)63338-X |
[17] |
WU Qianli, FOURCAUDOT A B, YAMANE K, et al. Exacerbated and prolonged inflammation impairs wound healing and increases scarring[J]. Wound Repair and Regeneration, 2016, 24(1): 26-34.
doi: 10.1111/wrr.12381 |
[18] | 邓雨萌, 雷霞. 炎性反应在瘢痕疙瘩发生发展中的作用及机制研究[J]. 中国美容医学, 2020, 29(4): 167-169. |
DENG Yumeng, LEI Xia. The role and mechanism of inflammatory responses in the development of keloid[J]. Chinese Journal of Aesthetic Medicine, 2020, 29(4): 167-169. | |
[19] |
SADIYA A, ANHA A, ALAM M S, et al. Development of antimicrobial and scar preventive chitosan hydrogel wound dressingsmicrobial and scar preventive chitosan hydrogel wound dressings[J]. International Journal of Pharmaceutics, 2016, 508(1/2): 92-101.
doi: 10.1016/j.ijpharm.2016.05.013 |
[20] |
VIVEK K P, GUFRAN A, SIDDH N U, et al. Nano-fibrous scaffold with curcumin for anti-scar wound healing[J]. International Journal of Pharmaceutics, 2020. DOI: 10.1016/j.ijpharm.2020.119858.
doi: 10.1016/j.ijpharm.2020.119858 |
[21] | 王佳琪, 王国栋, 吴洋. 活性氧在创伤愈合中作用的研究[J]. 现代生物医学进展, 2013, 13(31): 6194-6196. |
WANG Jiaqi, WANG Guodong, WU Yang. The review on role of reactive oxygen species in wound healing[J]. Progress in Modern Biomedicine, 2013, 13(31): 6194-6196. | |
[22] | DESMOULIERE A, BONTÉ F, LAVERDET B, et al. Fibroblasts and myofibroblasts in wound healing[J]. Clinical, Cosmetic and Investigational Dermatology, 2014, 7: 301-311. |
[23] |
XU Wei, HONG Seokjong, ZEITCHEK M, et al. Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin[J]. The Journal of Investigative Dermatology, 2015, 135(3): 796-806.
doi: 10.1038/jid.2014.477 |
[24] | ZHANG Dongmei, CAI Guanke, MUKHERJEE S, et al. Elastic, persistently moisture-retentive, and wearable biomimetic film inspired by fetal scarless repair for promoting skin wound healing[J]. ACS applied Materials & Interfaces, 2020, 12(5): 5542-5556. |
[25] |
ZHAO Jingling, YU Jianxing, XU Yingbin, et al. Epidermal HMGB1 activates dermal fibroblasts and causes hypertrophic scar formation in reduced hydration[J]. The Journal of Investigative Dermatology, 2018, 138(11): 2322-2332.
doi: 10.1016/j.jid.2018.04.036 |
[26] |
ZHAO Jingling, ZHONG Aimei, FRIEDRICH E, et al. S100A12 induced in the epidermis by reduced hydration activates dermal fibroblasts and causes dermal fibrosis[J]. Journal of Investigative Dermatology, 2017, 137(3): 650-659.
doi: S0022-202X(16)32638-0 pmid: 27840235 |
[27] | 陈晓洁, 吕爱凤, 高晶, 等. 功能敷料的“伤口湿润环境愈合”理论与实践[J]. 生物医学工程学进展, 2013, 34(1): 31-34. |
CHEN Xiaojie, LV Aifeng, GAO Jing, et al. The theory and practice of moisture wound healing on functional dressings[J]. Progress in Biomedical Engineering, 2013, 34(1): 31-34. | |
[28] | 何贵东, 李政, 华嘉川, 等. 水凝胶在医学领域应用研究进展[J]. 化工新型材料, 2017, 45(5): 223-225. |
HE Guidong, LI Zheng, HUA Jiachuan, et al. Research and application progress of hydrogel in medical field[J]. New Chemical Materials, 2017, 45(5): 223-225. | |
[29] | HUANG Xin, ZHANG Yaqing, ZHANG Xiangmei, et al. Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing[J]. Materials Science & Engineering C, 2013, 33(8): 4816-4824. |
[30] |
DINESH K S, ALOK R R. Biomedical applications of chitin, chitosan, and their derivatives[J]. Journal of Macromolecular Science: Part C, 2000, 40(1): 69-83.
doi: 10.1081/MC-100100579 |
[31] |
WANG Dong, ZHANG Nihui, MENG Guolong, et al. The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing[J]. Colloids and Surfaces B: Biointerfaces, 2020. DOI: 10.1016/j.colsurfb.2020.111191.
doi: 10.1016/j.colsurfb.2020.111191. |
[32] |
ZHANG Tao, WANG Xiaofeng, WANG Zhengcai, et al. Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation[J]. Biomedicine & Pharmacotherapy, 2020. DOI: 10.1016/j.biopha.2020.110287.
doi: 10.1016/j.biopha.2020.110287. |
[33] | WANG Le, YANG Junchuan, RAN Bei, et al. Small molecular TGF-β1-inhibitor-loaded electrospun fibrous scaffolds for preventing hypertrophic scars[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32545-32553. |
[34] |
PADMANABAN M, SATHIYAMOORTHY S, RAMYA M, et al. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions[J]. Journal of Ginseng Research, 2018, 42(2): 123-132.
doi: 10.1016/j.jgr.2017.01.008 |
[35] |
CUI Wenguo, CHENG Liying, HU Changmin, et al. Electrospun poly(L-Lactide) fiber with ginsenoside Rg3 for inhibiting scar hyperplasia of skin[J]. PLOS ONE, 2013. DOI: 10.1371/journal.pone.0068771.
doi: 10.1371/journal.pone.0068771. |
[36] |
FARAZ C, TAHEREH M, ALI H R, et al. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing[J]. Acta Biomaterialia, 2020, 113: 144-163.
doi: 10.1016/j.actbio.2020.06.031 |
[37] |
OLIVEIRA G V, HAWKINS H K, CHINKES D, et al. Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens[J]. International Wound Journal, 2009, 6(6): 445-451.
doi: 10.1111/j.1742-481X.2009.00638.x |
[38] | PRIYA G, LESLIE T, SNEHAL S, et al. CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing[J]. Matrix Biology, 2018, 75: 314-330. |
[39] | LI Haichang, DUANN P, LIN Peihui, et al. MG53 promotes wound healing and reduces scar formation by facilitating cell membrane repair and controlling myofibroblast differentiation[J]. Biophysical Journal, 2016, 110(3): 589. |
[40] |
LI Haichang, DUANN P, LIN Peihui, et al. Modulation of wound healing and scar formation by MG53 protein-mediated cell membrane repair[J]. Journal of Biological Chemistry, 2015, 290(40): 24592-24603.
doi: 10.1074/jbc.M115.680074 pmid: 26306047 |
[41] | 刘青武, 何秀娟, 张金超, 等. 细胞外基质在皮肤组织创面修复中的研究进展[J]. 医学研究杂志, 2019, 48(9): 21-24. |
LIU Qingwu, HE Xiujuan, ZHANG Jinchao, et al. Research progress of extracellular matrix in skin tissue wound repair[J]. Journal of Medical Research, 2019, 48(9): 21-24. | |
[42] | 王成, 荣艳华, 沈余明, 等. 正常皮肤与增生性瘢痕中Ⅰ型和Ⅲ型胶原的含量与比例[J]. 山东大学学报(医学版), 2016, 54(11): 64-67. |
WANG Cheng, RONG Yanhua, SHEN Yuming, et al. Contents and ratios of typeⅠand type Ⅲ collagens in normal skin and hypertrophic scar in people of different ages[J]. Journal of Shandong University(Health Sciences), 2016, 54(11): 64-67. | |
[43] |
YALMAN V, NELISA T L. Development of humic acid and alginate-based wound dressing and evaluation on inflammation[J]. Materials Technology, 2019, 34(12): 705-717.
doi: 10.1080/10667857.2019.1619961 |
[44] |
COELHO N M, WANG A, MCCULLOCH C A. Discoidin domain receptor 1 interactions with myosin motors contribute to collagen remodeling and tissue fibrosis[J]. Biochimica et Biophysica Acta: Molecular Cell Research, 2019. DOI: 10.1016/j.bbamcr.2019.07.005.
doi: 10.1016/j.bbamcr.2019.07.005. |
[45] |
ZHANG Nihui, GAO Tao, WANG Yao, et al. Modulating cationicity of chitosan hydrogel to prevent hypertrophic scar formation during wound healing[J]. International Journal of Biological Macromolecules, 2020, 154: 835-843.
doi: S0141-8130(20)32065-1 pmid: 32194120 |
[46] |
CHEN Xi, PENG Lihua, LI Ni, et al. The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo[J]. Journal of Ethnopharmacology, 2012, 139(3): 721-727.
doi: 10.1016/j.jep.2011.11.035 |
[47] |
CHEN Xi, PENG Lihua, SHAN Yinghui, et al. Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery[J]. International Journal of Pharmaceutics, 2013, 447(1/2): 171-181.
doi: 10.1016/j.ijpharm.2013.02.054 |
[48] |
SHAN Yinghui, PENG Lihua, LIU Xin, et al. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound[J]. International Journal of Pharmaceutics, 2015, 479(2): 291-301.
doi: 10.1016/j.ijpharm.2014.12.067 pmid: 25556053 |
[49] |
SHI Hongxue, LIN Cai, LIN Beibei, et al. The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo[J]. PLOS ONE, 2013. DOI: 10.1371/journal.pone.0059966.
doi: 10.1371/journal.pone.0059966. |
[50] |
CHENG Liying, SUN Xiaoming, ZHAO Xin, et al. Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars[J]. Biomaterials, 2016, 83: 169-181.
doi: 10.1016/j.biomaterials.2016.01.002 pmid: 26774564 |
[1] | ZHAO Xinzhe, WANG Shaoxia, GAO Jing, WANG Lu. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes [J]. Journal of Textile Research, 2021, 42(04): 33-41. |
[2] | YUE Chengfei, DING Changkun, LI Lu, CHENG Bowen. Carbodiimide/hydroxysuccinimide crosslinking modification and properties of collagen fibers [J]. Journal of Textile Research, 2020, 41(03): 1-7. |
[3] | LÜ Tingting, AN Ying, LI Haoyi, LIU Yujian, JIAO Zhiwei. Research progress of electrospun animal protein nanofibers [J]. Journal of Textile Research, 2019, 40(12): 140-145. |
[4] | . Preparation and properties of collagen/high-molecular weight chitosan composite fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 8-13. |
[5] | . Performance of aligned polylactic acid/collagen nanofibrous scaffolds [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 8-13. |
[6] | . Composition and structure of skin dander included in cashmere [J]. Journal of Textile Research, 2015, 36(06): 24-29. |
[7] | . Study on propreties of regenerated cattle skin collagen fiber [J]. Journal of Textile Research, 2015, 36(04): 1-6. |
[8] | . Surface modification of PET by acrylic acid and collagen [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 152-0. |
[9] | XU Yunhui;HUANG Chen;CHEN Yuyue;LIN Hong. Structure of cotton fiber coated with collagen [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(6): 1-4. |
[10] | WANG Xuejuan;TANG Yi;WU Weiyu;XU Jianjun;YE Guangdou. Research on collagenPPVA composite f ibers with glutaraldehyde as cross2linker [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(11): 13-16. |
[11] | YAO Li-rong;LIN Hong;CHEN Yu-yue. Properties of the collagen fiber and its application [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(9): 105-107. |