Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (10): 41-46.doi: 10.13475/j.fzxb.20201207506

• Fiber Materials • Previous Articles     Next Articles

Structure and properties of four different kinds of domestic cocoon varieties

XUE Rujing1, MO Xiaoxuan1, LIU Fujuan1,2,3()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory of Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
    3. Nantong Textile & Silk Industrial Technology Research Institute, Nantong, Jiangsu 226300, China
  • Received:2020-12-28 Revised:2021-06-17 Online:2021-10-15 Published:2021-10-29
  • Contact: LIU Fujuan E-mail:liufujuan@suda.edu.cn

Abstract:

In order to develop and design new functional textiles, multilayer morphology, chemical structure, crystalline structure, mechanical properties and thermal conductivity of four varieties of different silkworm cocoons walls were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffractometer, universal material testing machine and temperature and humidity tester, respectively. Theoretical analysis on the multilayer structure was conducted and the design principle of thermal protection products was studied and established. Research results show that all the four varieties of cocoon walls have unique multilayer porous structure, and the diameter of the fibers first increase and then decrease from the outer layer to the inner layer. Although the thickness and size are different, the four varieties of silkworm cocoon walls have good thermal buffering properties. In general, the tiger head cocoon wall has the best heat resistance, and the zebra cocoon wall (green) has the best thermal conductivity. When designing the multilayer structure of thermal protection products, the thermal insulation effect will be greatly improved by appropriately increasing the number of layers of thermal protection products under cost permission.

Key words: cocoon wall, thermal conductivity, multilayer structure, porous media

CLC Number: 

  • TS141

Fig.1

Schematic diagram of cocoon sampling"

Fig.2

Appearance of four kinds cocoons and its SEM images of inner layers(×150).(a)Tiger head cocoon; (b)White cocoon;(c)Zebra cocoon(green); (d) Zebra cocoon(yellow)"

Fig.3

Fiber average diameters from outer to inner layer of four varieties of silkworm cocoons"

Fig.4

FT-IR spectra of four varieties of silkworm cocoons outermost(a)and innermost(b)layer"

Fig.5

X-ray diffraction spectra of four varieties of silkworm cocoon outermost and innermost layers.(a)Tiger head cocoon; (b)White cocoon;(c)Zebra cocoon(green);(d) Zebra cocoon(yellow)"

Fig.6

Stress-strain curves for four varieties of silkworm cocoons along radial direction(a) and axial direction(b)"

Tab.1

Breaking stress and breaking strain of four varieties of silkworm cocoons along radial direction and axial direction"

蚕茧种类 径向 轴向
断裂应力/MPa 断裂应变/% 断裂应力/MPa 断裂应变/%
虎头蚕茧壳 15.71 ± 6.29 12.45 ± 2.16 5.02 ± 1.18 14.04 ± 1.85
白色茧壳 23.90 ± 4.64 12.03 ± 1.02 8.18 ± 2.81 9.15 ± 1.23
斑马蚕茧壳(绿色) 22.27 ± 1.77 12.60 ± 0.71 1.81 ± 0.81 8.28 ± 7.12
斑马蚕茧壳(黄色) 32.45 ± 5.19 16.18 ± 1.52 10.56 ± 2.35 14.85 ± 2.10

Fig.7

Temperature profiles for inside of four varieties of silkworm cocoons as the ambient temperature increases(a)and decreases(b)"

[1] 张阳阳, 李菁, 赵丰, 等. 家蚕、蓖麻蚕和天蚕的茧丝结构比较[J]. 蚕业科学, 2015, 41(3):491-497.
ZHANG Yangyang, LI Jing, ZHAO Feng, et al. A comparison on structure of cocoon filaments from mulberry silkworm, eri-silkworm and giant silkworm[J]. Science of Sericulture, 2015, 41(3):491-497.
[2] 谢启凡, 胡彬慧, 杨明英, 等. 家蚕茧及其茧丝和生丝的机械性能概述[J]. 蚕业科学, 2015, 41(6):1120-1126.
XIE Qifan, HU Binhui, YANG Mingying, et al. A review on mechanical properties of silkworm cocoon, cocoon filament and raw silk[J]. Science of Sericulture, 2015, 41(6):1120-1126.
[3] 肖信香, 余博文, 朱文清, 等. 天然柞蚕茧基本性能研究[J]. 武汉纺织大学学报, 2015, 28(3):5-9.
XIAO Xinxiang, YU Bowen, ZHU Wenqing, et al. Study on basic properties of natural tussah cocoon[J]. Journal of Wuhan Textile University, 2015, 28(3):5-9.
[4] DANKS H V. The roles of insect cocoons in cold conditions[J]. European Journal of Entomology, 2004, 101(3):433-437.
doi: 10.14411/eje.2004.062
[5] 岳冬梅 . 王林美, 李树英. 几种野蚕丝形态结构的比较分析[C]// 中国蚕学会. 中国蚕学会第八届青年学术研讨会论文集. 昆明: 中国蚕学会, 2014: 241-245.
YUE Dongmei, WANG Linmei, LI Shuying. The comparative analysis on the morphological structure of wild silk[C]// Chinese Silkworm Society. Proceedings of the 8th Youth Academic Symposium of Chinese Silkworm Society. Kunming: Chinese Silkworm Society, 2014: 241-245.
[6] CHEN F J, PORTER D, VOLLRATH F. Structure and physical properties of silkworm cocoons[J]. Journal of the Royal Society Interface, 2012, 7(74):2299-2308.
[7] GUAN J, ZHU W S, LIU B H, et al. Comparing the microstructure and mechanical properties of bombyx mori and antheraea pernyi cocoon composites[J]. Acta Biomaterialia, 2017, 47:60-70.
doi: 10.1016/j.actbio.2016.09.042
[8] ZHANG J, KAUR J, RAJKHOWA R, et al. Mechanical properties and structure of silkworm cocoons: a comparative study of bombyx mori, antheraea assamensis, antheraea pernyi and antheraea mylitta silkworm cocoons[J]. Materials Science & Engineeering C: Materials for Biological Applications, 2013, 33(6):3206-3213.
[9] LIU F J, WANG P, ZHANG Y, et al. A fractional model for insulation clothings eith cocoon-like porous structure[J]. Thermal Science, 2016, 20(3):779-784.
doi: 10.2298/TSCI1603779L
[10] CHUNG D E, KIM H H, KIM M K, et al. Effects of different bombyx mori silkworm varieties on the structural characteristics and properties of silk[J]. International Journal of Biological Macromolecules, 2015, 79:943-951.
doi: 10.1016/j.ijbiomac.2015.06.012
[11] LIU F J, ZHANG X J, LI X. Silkworm (bombyx mori) cocoon vs wild cocoon multi-layer structure and performance characterization[J]. Thermal Science, 2019, 23(4):2135-2142.
doi: 10.2298/TSCI1904135L
[12] HIEBER C S. The insulation layer in the cocoons of argiopeaurantia (araneae, araneidae)[J]. Journal of Thermal Biology, 1985, 10(3):171-175.
doi: 10.1016/0306-4565(85)90023-3
[1] . Trsting of thermal conductivity of fiber based on transient plane heat source method [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 18-23.
[2] . Application of gray clustering analysis in evaluation of fabric thermal performance [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 64-67.
[3] . Preparation of activated carbon fabric and its thermal insulation performance [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(4): 43-0.
[4] . Influence on sericin fixation by GA on properties of cocoon silk [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(3): 57-0.
[5] ZHANG Ruquan;ZHOU Shuangxi;TAO Rong;LIN Jianyong. Testing device of fabric dynamic thermal conductivity based on MCU [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(3): 122-126.
[6] WEI Sainan;LIU Chaoying;LI Ruizhou;WU Huanling;ZHANG Changwei. Influence of fabric structure on its thermal comfort property in wet state [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(8): 42-44.
[7] ZHU Fanglong;ZHANG Weiyuan. Fractal model for effective thermal conductivity of emergency thermal protective fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(6): 39-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!