Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 71-76.doi: 10.13475/j.fzxb.20210101206
• Textile Engineering • Previous Articles Next Articles
LU Jun1,2, GUAN Xiaoning1,2, LIN Jing1,2(), LAO Jihong1,2, WANG Fujun1,2, LI Yan1,2, WANG Lu1,2
CLC Number:
[1] |
PAULY H, KELLY D, POPAT K, et al. Mechanical properties of a hierarchical electrospun scaffold for ovine anterior cruciate ligament replacement[J]. Journal of Orthopaedic Research, 2019, 37(2):421-430.
doi: 10.1002/jor.v37.2 |
[2] |
JOSEPH A M, COLLINS C L, HENKE N M, et al. A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics[J]. Journal of Athletic Training, 2013, 48(6):810-817.
doi: 10.4085/1062-6050-48.6.03 |
[3] |
李宇, 张豪, 肖世卓, 等. LARS人工韧带与自体腘绳肌腱一期重建前后交叉韧带的疗效比较[J]. 中国修复重建外科杂志, 2020, 34(8):1018-1024.
pmid: 32794672 |
LI Yu, ZHANG Hao, XIAO Shizhuo, et al. Effectiveness comparison of LARS artificial ligament and autogenous hamstring tendon in one-stage reconstruction of anterior and posterior cruciate ligaments[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2020, 34(8):1018-1024.
doi: 10.7507/1002-1892.201908051 pmid: 32794672 |
|
[4] | 陈伟, 邹刚, 刘毅. LARS韧带在前交叉韧带重建中的临床应用与关注热点[J]. 中国组织工程研究, 2020, 24(8):1287-1292. |
CHEN Wei, ZOU Gang, LIU Yi. Clinical application and focus of LARS ligament in anterior cruciate ligament reconstruction[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(8):1287-1292. | |
[5] |
陈天午, 陈世益. 人工韧带用于前交叉韧带修复重建: 目前产品与经验[J]. 中国修复重建外科杂志, 2020, 34(1):1-9.
pmid: 31939226 |
CHEN Tianwu, CHEN Shiyi. Artificial ligaments applied in anterior cruciate ligament repair and reconstruction: current products and experience[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2020, 34(1):1-9.
doi: 10.7507/1002-1892.201908084 pmid: 31939226 |
|
[6] | 陈天午, 蒋佳, 陈世益. 人工韧带的临床应用现状及进展[J]. 宁夏医学杂志, 2016, 38(8):673-676. |
CHEN Tianwu, JIANG Jia, CHEN Shiyi. Current status and progress of clinical application of artificial ligaments[J]. Ningxia Medical Journal, 2016, 38(8):673-676. | |
[7] |
GUIDOIN M F, MAROIS Y, BEJUI J, et al. Analysis of retrieved polymer fiber based replacements for the ACL[J]. Biomaterials, 2000, 21(23):2461-2474.
doi: 10.1016/S0142-9612(00)00114-9 |
[8] | 刘明洁, 林婧, 关国平, 等. 典型纺织基人工韧带及其移出物结构与力学性能[J]. 纺织学报, 2020, 41(11):66-72. |
LIU Mingjie, LIN Jing, GUAN Guoping, et al. Structures and mechanical properties of typical textile-based artificial ligaments and explants[J]. Journal of Textile Research, 2020, 41(11):66-72. | |
[9] | 东华大学. 人工韧带多自由度在线疲劳模拟测试装置及其测试方法: 202011492121.4[P]. 2021-04-09. |
Donghua University. Artificial ligament multi-degree-of-freedom online fatigue simulation testing device and method: 202011492121.4[P]. 2021-04-09. | |
[10] |
JUNG H J, VANGIPURAM G, FISHER M B, et al. The effects of multiple freeze-thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft[J]. Journal of Orthopaedic Research, 2011, 29(8):1193-1198.
doi: 10.1002/jor.v29.8 |
[11] |
WOO S L Y, HOLLIS J M, ADAMS D J, et al. Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation[J]. American Journal of Sports Medicine, 1991, 19(3):217-225.
doi: 10.1177/036354659101900303 |
[12] | 卢俊, 陈泓傑, 汤旭, 等. 人工韧带拉伸扭转疲劳测试装置的设计和应用[J]. 东华大学学报(自然科学版), 2021.DOI: 10.19886/j.cnki.dhdz.2020.0354. |
LU Jun, CHEN Hongjie, TANG Xu, et al. Design and application of artificial ligament tensile and torsion fatigue testing device[J]. Journal of Donghua University(Nature Science), 2021.DOI: 10.19886/j.cnki.dhdz.2020.0354. | |
[13] |
TAYLOR K A, CUTCLIFFE H C, QUEEN R M, et al. In vivo measurement of ACL length and relative strain during walking[J]. Journal of Biomechanics, 2013, 46(3):478-483.
doi: 10.1016/j.jbiomech.2012.10.031 |
[14] |
GAO B, ZHENG N Q. Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking[J]. Clinical Biomechanics, 2010, 25(3):222-229.
doi: 10.1016/j.clinbiomech.2009.11.006 |
[15] |
DROUIN G, MASSON M, YAHIA L. In vitro fatigue testing of prosthetic ligaments: a new concept[J]. Bio-medical Materials and Engineering, 1991, 1(3):159-165.
doi: 10.3233/BME-1991-1304 |
[16] |
HONL M, CARRERO V, HILLE E, et al. Bone-patellar tendon-bone grafts for anterior cruciate ligament reconstruction:an in vitro comparison of mechanical behavior under failure tensile loading and cyclic submaximal tensile loading[J]. American Journal of Sports Medicine, 2002, 30(4):549-557.
doi: 10.1177/03635465020300041501 |
[17] | 黄云帆. 全可降解人工韧带的成型及其力学和生物学性能研究[D]. 上海: 东华大学, 2020: 24-25. |
HUANG Yunfan. Study on the mechanical and biological properties of fully degradable artificial ligaments[D]. Shanghai: Donghua University, 2020: 24-25. | |
[18] | SHANAHAN C, TOFAIL S A M, TIERNAN P. Viscoelastic braided stent: finite element modelling and validation of crimping behaviour[J]. Materials & Design, 2017, 121:143-153. |
[19] | 薛雯. 复合编织血管支架物理力学性能研究[D]. 上海: 东华大学, 2019: 58. |
XUE Wen. The research on physical and mechanical properties of composite braided stents[D]. Shanghai: Donghua University, 2019: 58. | |
[20] | 宁方刚. 绳缆编织结构建模及其绕滑轮弯曲疲劳性能研究[D]. 上海: 东华大学, 2016: 121-125. |
NING Fanggang. Researches on geometrical modeling of braided ropes and their bending fatigue properties when bent over sheaves[D]. Shanghai: Donghua University, 2016: 121-125. | |
[21] | 于伟东. 纺织材料学[M]. 2版. 北京: 中国纺织出版社, 2018: 121-122. |
YU Weidong. Textile material science[M]. 2nd ed. Beijing: China Textile & Apparel Press, 2018: 121-122. |
[1] | LU Jun, WANG Fujun, LAO Jihong, WANG Lu, LIN Jing. Finite element analysis of braided artificial ligaments of different structures under combined loading [J]. Journal of Textile Research, 2021, 42(08): 84-89. |
[2] | SU Mengru, ZOU Ting, CHEN Qichao, LI Chaojing, WANG Fujun, WANG Lu. Research progress of medical barbed sutures [J]. Journal of Textile Research, 2021, 42(05): 178-184. |
[3] | YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45. |
[4] | YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9. |
[5] | ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72. |
[6] | LIU Mingjie, LIN Jing, GUAN Guoping, BROCHU G, GUIDION R, WANG Lu. Structures and mechanical properties of typical textile-based artificial ligaments and explants [J]. Journal of Textile Research, 2020, 41(11): 66-72. |
[7] | QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166. |
[8] | ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks [J]. Journal of Textile Research, 2020, 41(03): 168-174. |
[9] | . Dynamic fatigue resistance of webbing sling with high-tenacity PET fiber [J]. Journal of Textile Research, 2015, 36(02): 66-70. |
[10] | . Bending fatigue theory of textile fibers and its application [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(5): 152-0. |
|