Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 176-184.doi: 10.13475/j.fzxb.20210104909

• Machinery & Accessories • Previous Articles     Next Articles

Mathematical modeling and dynamic simulation of air conditioning system in spinning workshop

JI Jie1, HAN Yunlong1, GAO Jie2, WANG Huming2, LU Biao1   

  1. 1. School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China
    2. Jiangsu Jingya Environmental Technology Co., Ltd., Wuxi, Jiangsu 214426, China
  • Received:2021-01-21 Revised:2021-06-28 Online:2022-03-15 Published:2022-03-29

Abstract:

In order to study the dynamic change of temperature and humidity in spinning workshop and provide operation platform for the automatic control strategy of air conditioning system, the models of spray chamber and spinning workshop were established respectively on the basis of heat, moisture and air-volume balance. The dynamic simulation platform of spinning air conditioning system was developed by Python and PyQt5 which support business logic programming with developed graphical user interface. The fresh air control strategy of dew point was established, and the automatic control of the temperature and humidity in the workshop was achieved based on the proportional integral derivative(PID)control algorithm. Taking the structure, process and air conditioning equipment of a spinning workshop as the basic parameters and boundary conditions of the simulation platform, the temperature and humidity changes in the workshop after changing the control parameters of air conditioning equipment were simulated. The results show that the simulation platform of air conditioning system of the spinning workshop is useful to adjust and control the air conditioning equipment. It can calculate the machine dew point of spray chamber, the changing value of the temperature and humidity, and the response time when the temperature and humidity are stable to the set temperature and humidity for the workshop. The simulation platform of spinning air-conditioning system has the virtual operation environment of a spinning workshop, which can be used to study the control strategy of the air-conditioning system.

Key words: spinning workshop, air conditioning system, mathematical model, simulation platform, PID control algorithm

CLC Number: 

  • TS108.3

Fig.1

Model of air conditioning system in spinning"

Fig.2

Control strategy of temperature"

Fig.3

Control strategy of humidity"

Tab.1

Basic setting parameters"

车间初始参数 数值 车间初始参数 数值
空气密度/(kg·m-3) 1.2 墙体温升系数 40
墙体密度/(kg·m-3) 2 500 喷水室迎风面积/m2 13
空气比热容/
(kJ·kg-1·℃-1)
1.01 水泵额定转速/
(r·min-1)
2 900
墙体比热容/
(kJ·kg-1·℃-1)
0.93 水泵额定流量/
(m3·h-1)
200
车间体积/m3 14 000 送风机额定转速/
(r·min-1)
890
墙体体积/m3 100 送风机额定送风量/
(m3·s-1)
66.67

Fig.4

Main interface of simulation platform"

Fig.5

Simulation parameter setting. (a) Basic setting module;(b) Spinning workshop module;(c) Spray chamber thermal module;(d) Control strategy module; (e) PID control module"

Fig.6

Influence of fresh air on machine dew-point temperature and moisture content"

Fig.7

Influence of second return air valve opening on temperature and humidity. (a) Change of temperature;(b) Change of moisture content"

Fig.8

Influence of fan frequency on temperature and humidity.(a) Change of temperature;(b) Change of moisture content"

Fig.9

Changes of temperature and humidity with parameters of workshop"

Fig.10

PID automatic control of temperature and humidity"

[1] 国家统计局. 中华人民共和国2019年国民经济和社会发展统计公报[N]. 中国信息报, 2020-03-02(002).
National Bureau of Statistics of China. Statistical communique of the People's Republic of China on the 2019 national economic and social development[N]. China Information News, 2020-03-02(002).
[2] HASANBEIGI A, PRICE L. A review of energy use and energy efficiency technologies for the textile indus-try[J]. Renewable and Sustainable Energy Reviews, 2012,16(6):3648-3665.
doi: 10.1016/j.rser.2012.03.029
[3] 赵阳, 颜苏芊, 孙晓冬. 纺织企业空调系统节能技术措施[J]. 棉纺织技术, 2014,42(7):75-78.
ZHAO Yang, YAN Suqian, SUN Xiaodong. Technology measures of air conditioning system energy saving in textile enterprise[J]. Cotton Textile Technology, 2014,42(7):75-78.
[4] 邓小龙, 张建林, 陆锦军, 等. 纺织空调系统的模糊PID控制研究及应用[J]. 仪器仪表学报, 2011,32(4):763-768.
DENG Xiaolong, ZHANG Jianlin, LU Jinjun, et al. Research and application of air condition in textile industry based on fuzzy PID[J]. Chinese Journal of Scientific Instrument, 2011,32(4):763-768.
[5] YANG Ruiliang, LIU Lei, REN Yue. Thermal environment in the cotton textile workshop[J]. Energy and Buildings, 2015,102:432-441.
doi: 10.1016/j.enbuild.2015.06.024
[6] SCHICHT H. Air conditioning for Brazil's textile industry[J]. International Journal of Refrigeration, 1979,2(6):229-233.
doi: 10.1016/0140-7007(79)90088-4
[7] FILIMONOV D S, MAKAROV A A. Mathematical modeling and adjustment of the parameters of the controllers in a central air-conditioning system[J]. Fibre Chemistry, 2013,45(2):122-124.
doi: 10.1007/s10692-013-9494-0
[8] AFRAM A, JANABI-SHARIFI F. Review of modeling methods for HVAC systems[J]. Applied Thermal Engineering, 2014,67(1):507-519.
doi: 10.1016/j.applthermaleng.2014.03.055
[9] HOMOD R Z. Review on the HVAC System modeling types and the shortcomings of their application[J]. Journal of Energy, 2013,2013:1-10.
[10] XING Tian, LI Xiuming, ZHANG Jili. An identification method for room temperature dynamic model based on analytical solution in VAV system[J]. Energy and Buildings, 2018,174:134-146.
doi: 10.1016/j.enbuild.2018.06.039
[11] 郭安柱, 马永志. 空调房数学建模与仿真[J]. 科学技术创新, 2020(12):120-122.
GUO Anzhu, MA Yongzhi. Mathematical modeling and simulation of air-conditioned room[J]. Scientific and Technological Innovation, 2020(12):120-122.
[12] JIE Dong. Modeling and simulation of temperature control system of coating plant air conditioner[J]. Procedia Computer Science, 2017,107:196-201.
doi: 10.1016/j.procs.2017.03.078
[13] CHEN Yan, TREADO S. Development of a simulation platform based on dynamic models for HVAC control analysis[J]. Energy and Buildings, 2014,68:376-386.
doi: 10.1016/j.enbuild.2013.09.016
[14] 方海明, 颜苏芊, 张敏, 等. 纺织厂空调设计计算软件的开发与应用[J]. 制冷与空调(四川), 2015,29(4):398-401.
FANG Haiming, YAN Suqian, ZHANG Min. et al. Development of the air conditioning design software for the textile mill[J]. Refrigeration & Air Conditioning, 2015,29(4):398-401.
[15] MUSTAFARAJ G, CHEN J, LOWRY G. Development of room temperature and relative humidity linear parametric models for an open office using BMS data[J]. Energy and Buildings, 2010,42(3):348-356.
doi: 10.1016/j.enbuild.2009.10.001
[16] YAO Ye, YANG Kun, HUANG Mengwei, et al. A state-space model for dynamic response of indoor air temperature and humidity[J]. Building and Environment, 2013,64:26-37.
doi: 10.1016/j.buildenv.2013.03.009
[17] 毛灿, 李化淼, 牛萌萌, 等. 国内喷水室的研究现状[J]. 制冷与空调, 2014,24(9):45-49.
MAO Can, LI Huamiao, NIU Mengmeng, et al. Research status of the air washers in China[J]. Refrigeration and Air-Conditioning, 2014,24(9):45-49.
[18] WIKSTEN R, ASSAD M E H. Heat and mass transfer characteristics in a spray chamber[J]. International Journal of Refrigeration, 2007,30(7):1207-1214.
doi: 10.1016/j.ijrefrig.2007.02.013
[19] 李新禹, 陈杰, 金星, 等. 温湿度独立控制空调技术在细纱车间的应用[J]. 纺织学报, 2009,30(2):112-116.
LI Xinyu, CHEN Jie, JIN Xing, et al. Application of temperature and humidity independent controlled air-conditioning technology in spinning department[J]. Journal of Textile Research, 2009,30(2):112-116.
[20] 高龙. 现代纺织空调工程[M]. 北京: 中国纺织出版社, 2018:68-69.
GAO Long. Modern textile air conditioning engineer-ing[M]. Beijing: China Textile & Apparel Press, 2018: 68-69.
[21] 雷翔霄, 徐立娟, 唐春霞. 基于神经网络PID算法的镀液温度控制系统[J]. 电镀与精饰, 2020,42(8):39-42.
LEI Xiangxiao, XU Lijuan, TANG Chunxia. Bath temperature control system based on neural network PID[J]. Plating & Finishing, 2020,42(8):39-42.
[22] 张桂林, 李锋, 耿云飞. 基于增量式PID控制的空气热源泵供水机温度控制系统设计[J]. 计算机与数字工程, 2021,49(2):268-271.
ZHANG Guilin, LI Feng, GENG Yunfei. Design of temperature control system for air heat pump water supply machine based on incremental PID control[J]. Computer & Digital Engineering, 2021,49(2):268-271.
[23] CHEN Yi, YAN Huaxia, LUO Yimo, et al. A proportional-integral (PI) law based variable speed technology for temperature control in indirect evaporative cooling system[J]. Applied Energy, 2019,251:113390.
doi: 10.1016/j.apenergy.2019.113390
[24] 王维波, 贾宝鹃, 张晓东. Python Qt GUI与数据可视化编程[M]. 北京: 人民邮电出版社, 2019: 21-34.
WANG Weibo, JIA Baojuan, ZHANG Xiaodong. Python Qt GUI and data visualization programming[M]. Beijing: Posts & Telecom Press, 2019: 21-34.
[1] SHEN Yingle, CONG Honglian, YU Xuliang, ZHENG Peixiao. Technological model establishment and system realization of weft-knitted products [J]. Journal of Textile Research, 2021, 42(07): 89-94.
[2] CUI Wen, LI Xiaohui. Relationship between garment dart and breast feature of female body [J]. Journal of Textile Research, 2021, 42(04): 139-143.
[3] ZHOU Qihong, SUN Baotong, CEN Junhao, ZHAN Qichen. Measurement method of winding density of cheese package based on laser scanning and modeling [J]. Journal of Textile Research, 2021, 42(01): 96-102.
[4] XIANG Zhong, WANG Yuhang, WU Jinbo, QIAN Miao, HU Xudong. Research progress in detection of hydrogen peroxide concentration [J]. Journal of Textile Research, 2020, 41(10): 197-204.
[5] ZHENG Xiaohu, BAO Jinsong, MA Qingwen, ZHOU Heng, ZHANG Liangshan. Spinning workshop collaborative scheduling method based on simulated annealing genetic algorithm [J]. Journal of Textile Research, 2020, 41(06): 36-41.
[6] XU Yunlong, XIA Fenglin. Influence of interval distance of double-needle bed warp-knitting machine on yarn demand [J]. Journal of Textile Research, 2019, 40(08): 151-156.
[7] REN Huiying, ZOU Kun, HU Xiaorong. Simulation platform for chemical filament automatic doff system [J]. Journal of Textile Research, 2019, 40(07): 151-157.
[8] . Prediction model on tensile strength of air jet vortex spinning yarn and its verification [J]. Journal of Textile Research, 2018, 39(10): 32-37.
[9] . Arrangement of garment production line by particle swarm algorithm [J]. Journal of Textile Research, 2018, 39(10): 120-124.
[10] . Modeling and numerical simulating for for residual ammonia volatilization from yarn bobbin [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 149-154.
[11] . Modeling and tensile performance of negative Poissin's ratio warp-knitted spacer structures based on mesh structure [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 59-65.
[12] . Out-of–plane deformation of tight woven fabric under high air pressure [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 49-55.
[13] . Automatic construction of digital woven fabric using sequence yarn images [J]. Journal of Textile Research, 2016, 37(3): 35-40.
[14] . Weaving techniques and mathematical model of techniques for patterned simple gauze of Song dynasty [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 42-47.
[15] . Mathematical modeling of air friction duag of clothing fabric surface [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 50-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!