Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 1-8.doi: 10.13475/j.fzxb.20210106008
• Invited Paper • Next Articles
ZHANG Beilei, SHEN Mingwu, SHI Xiangyang()
CLC Number:
[1] |
SILL T J, VON RECUM H A. Electrospinning: applications in drug delivery and tissue engineering[J]. Biomaterials, 2008,29(13):1989-2006.
doi: 10.1016/j.biomaterials.2008.01.011 |
[2] |
LI D, XIA Y. Electrospinning of nanofibers: reinventing the wheel?[J]. Adv Mater, 2004,16(14):1151-1170.
doi: 10.1002/(ISSN)1521-4095 |
[3] |
XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chem Rev, 2019,119(8):5298-5415.
doi: 10.1021/acs.chemrev.8b00593 |
[4] |
ZHAO J, CUI W. Functional electrospun fibers for local therapy of cancer[J]. Adv Fiber Mater, 2020,2(5):229-245.
doi: 10.1007/s42765-020-00053-9 |
[5] |
HUANG W, XIAO Y, SHI X. Construction of electrospun organic/inorganic hybrid nanofibers for drug delivery and tissue engineering applications[J]. Adv Fiber Mater, 2019,1:32-45.
doi: 10.1007/s42765-019-00007-w |
[6] |
HU J, KAI D, YE H, et al. Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering[J]. Mater Sci Eng C-Mater Biol Appl, 2017,70:1089-1094.
doi: 10.1016/j.msec.2016.03.035 |
[7] |
QIU Q, WU J, QUAN Z, et al. Electrospun nanofibers of polyelectrolyte-surfactant complexes for antibacterial wound dressing application[J]. Soft Matter, 2019,15(48):10020-10028.
doi: 10.1039/C9SM02043H |
[8] |
ZHAO Y L, FAN Z Y, SHEN M W, et al. Hyaluronic acid-Functionalized electrospun polyvinyl alcohol/polyethyleneimine nanofibers for cancer cell capture applications[J]. Adv Mater Interfaces, 2015,2(15):1500256.
doi: 10.1002/admi.201500256 |
[9] |
MA B, XIE J, JIANG J, et al. Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration[J]. Nanomedicine, 2013,8(9):1459-1481.
doi: 10.2217/nnm.13.132 |
[10] |
ZHANG H, LIU Y, CHEN M, et al. Shape effects of electrospun fiber rods on the tissue distribution and antitumor efficacy[J]. J Controlled Release, 2016,244:52-62.
doi: 10.1016/j.jconrel.2016.05.011 |
[11] |
WENG L, BODA S K, WANG H, et al. Novel 3D hybrid nanofiber aerogels coupled with BMP-2 peptides for cranial bone regeneration[J]. Adv Healthcare Mater, 2018,7(10):1701415.
doi: 10.1002/adhm.v7.10 |
[12] |
WEI J, XIA T, CHEN W, et al. Glucose and lipid metabolism screening models of hepatocyte spheroids after culture with injectable fiber fragments[J]. J Tissue Eng Regen Med, 2020,14(6):774-788.
doi: 10.1002/term.v14.6 |
[13] |
SCHOLTEN E, DHAMANKAR H, BROMBERG L, et al. Electrospray as a tool for drug micro-and nanoparticle patterning[J]. Langmuir, 2011,27(11):6683-6688.
doi: 10.1021/la201065n |
[14] |
FATHONA I W, YABUKI A. A simple one-step fabrication of short polymer nanofibers via electrospinning[J]. J Mater Sci, 2014,49(9):3519-3528.
doi: 10.1007/s10853-014-8065-y |
[15] |
LUO C J, STRIDE E, STOYANOV S, et al. Electrospinning short polymer micro-fibres with average aspect ratios in the range of 10-200[J]. J Polym Res, 2011,18(6):2515-2522.
doi: 10.1007/s10965-011-9667-6 |
[16] |
LI P, XI Y, LI K, et al. Fabrication and properties of electrospun magnetoelectric graphene/Fe3O4/poly(lactic-co-glycolic acid) short nanofibers[J]. J Nanosci Nanotechnol, 2019,19(1):170-175.
doi: 10.1166/jnn.2019.16400 |
[17] |
LI Y, CAO L, YIN X, et al. Semi-interpenetrating polymer network biomimetic structure enables superelastic and thermostable nanofibrous aerogels for cascade filtration of PM2.5[J]. Adv Funct Mater, 2020,30(14):1910426.
doi: 10.1002/adfm.v30.14 |
[18] |
YOSHIKAWA C, ZHANG K, ZAWADZAK E, et al. A novel shortened electrospun nanofiber modified with a concentrated polymer brush[J]. Sci Technol Adv Mater, 2019,12(1):015003.
doi: 10.1088/1468-6996/12/1/015003 |
[19] |
BODA S K, CHEN S, CHU K, et al. Electrospraying electrospun nanofiber segments into injectable microspheres for potential cell delivery[J]. ACS Appl Mater Interfaces, 2018,10(30):25069-25079.
doi: 10.1021/acsami.8b06386 |
[20] |
SAWAWI M, WANG T Y, NISBET D R, et al. Scission of electrospun polymer fibres by ultrasonication[J]. Polymer, 2013,54(16):4237-4252.
doi: 10.1016/j.polymer.2013.05.060 |
[21] |
FRIEDEMANN K, CORRALES T, KAPPL M, et al. Facile and large-scale fabrication of anisometric particles from fibers synthesized by colloid-electrospinning[J]. Small, 2012,8(1):144-153.
doi: 10.1002/smll.201101247 |
[22] |
LI H, WAN H, XIA T, et al. Therapeutic angiogenesis in ischemic muscles after local injection of fragmented fibers with loaded traditional Chinese medicine[J]. Nanoscale, 2015,7(30):13075-13087.
doi: 10.1039/C5NR02005K |
[23] |
WEI J, LEI D, CHEN M, et al. Engineering HepG2 spheroids with injectable fiber fragments as predictable models for drug metabolism and tumor infiltration[J]. J Biomed Mater Res Part B, 2020,108(8):3331-3344.
doi: 10.1002/jbm.b.v108.8 |
[24] |
OMIDINIA-ANARKOLI A, BOESVELD S, TUVSHINDORJ U, et al. An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells[J]. Small, 2017,13(36):1702207.
doi: 10.1002/smll.v13.36 |
[25] | JOHN J V, CHOKSI M, CHEN S, et al. Tethering peptides onto biomimetic and injectable nanofiber microspheres to direct cellular response[J]. Nanomedicine, 2019,22:102081. |
[26] |
FENG Z Q, SHI C, ZHAO B, et al. Magnetic electrospun short nanofibers wrapped graphene oxide as a promising biomaterials for guiding cellular behavior[J]. Mater Sci Eng C-Mater Biol Appl, 2017,81:314-320.
doi: 10.1016/j.msec.2017.08.015 |
[27] |
WEI J, LUO X, CHEN M, et al. Spatial distribution and antitumor activities after intratumoral injection of fragmented fibers with loaded hydroxycamptothecin[J]. Acta Biomater, 2015,23:189-200.
doi: 10.1016/j.actbio.2015.05.020 |
[28] |
HE N, CHEN Z, YUAN J, et al. Tumor pH-Responsive release of drug-conjugated micelles from fiber fragments for intratumoral chemotherapy[J]. ACS Appl Mater Interfaces, 2017,9(38):32534-32544.
doi: 10.1021/acsami.7b09519 |
[29] |
CHEN Z, LIU W, ZHAO L, et al. Acid-labile degradation of injectable fiber fragments to release bioreducible micelles for targeted cancer therapy[J]. Biomacromolecules, 2018,19(4):1100-1110.
doi: 10.1021/acs.biomac.7b01696 |
[30] |
WANG T Y, BRUGGEMAN K F, KAUHAUSEN J A, et al. Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson's disease[J]. Biomaterials, 2016,74:89-98.
doi: 10.1016/j.biomaterials.2015.09.039 |
[31] |
XIAO Y, LIN L, SHEN M, et al. Design of DNA aptamer-functionalized magnetic short nanofibers for efficient capture and release of circulating tumor cells[J]. Bioconjugate Chem, 2020,31(1):130-138.
doi: 10.1021/acs.bioconjchem.9b00816 |
[32] |
ZHAO Y L, JIE X, SHI X Y, et al. Capturing cancer cells using hyaluronic acid-immobilized electrospun random or aligned PLA nanofibers[J]. Colloid Surf A-Physicochem Eng Asp, 2019,583:123978.
doi: 10.1016/j.colsurfa.2019.123978 |
[33] | FEHM T, MULLER V, ALIX-PANABIERES C, et al. Micrometastatic spread in breast cancer: detection, molecular characterization and clinical relevance[J]. Breast Cancer Res, 2008,10(S1):1-10. |
[34] |
YOON H J, SHANKER A, WANG Y, et al. Tunable thermal-sensitive polymer-graphene oxide composite for efficient capture and release of viable circulating tumor cells[J]. Adv Mater, 2016,28(24):4891-4897.
doi: 10.1002/adma.v28.24 |
[35] |
LEE A W, LIN F X, WEI P L, et al. Binary-blend fibber-based capture assay of circulating tumor cells for clinical diagnosis of colorectal cancer[J]. J Nanobiotechnol, 2018,16:4.
doi: 10.1186/s12951-017-0330-1 |
[36] |
LIU H, SUN N, DING P, et al. Fabrication of aptamer modified TiO2 nanofibers for specific capture of circulating tumor cells[J]. Colloid Surf B-Biointerfaces, 2020,191:110985.
doi: 10.1016/j.colsurfb.2020.110985 |
[37] |
FAN Z Y, ZHAO Y L, ZHU X Y, et al. Folic acid modified electrospun poly(vinyl alcohol)/polyethyleneimine nanofibers for cancer cell capture applications[J]. Chin J Polym Sci, 2016,34(6):755-765.
doi: 10.1007/s10118-016-1792-6 |
[38] |
YANG G, LI X, HE Y, et al. Capturing circulating tumor cells through a combination of hierarchical nanotopography and surface chemistry[J]. ACS Biomater Sci Eng, 2018,4(6):2081-2088.
doi: 10.1021/acsbiomaterials.7b00683 |
[39] |
HE P, LI Y, HUANG Z, et al. A mu.pngunctional coaxial fiber membrane loaded with dual drugs for guided tissue regeneration[J]. J Biomater Appl, 2020,34(8):1041-1051.
doi: 10.1177/0885328219894001 |
[40] |
XIE Z, PARAS C B, WENG H, et al. Dual growth factor releasing multi-functional nanofibers for wound healing[J]. Acta Biomater, 2013,9(12):9351-9359.
doi: 10.1016/j.actbio.2013.07.030 |
[41] |
HE P, ZHONG Q, GE Y, et al. Dual drug loaded coaxial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection[J]. Mater Sci Eng C-Mater Biol Appl, 2018,90:549-556.
doi: 10.1016/j.msec.2018.04.014 |
[42] |
BODA S K, WANG H J, JOHN J V, et al. Dual delivery of alendronate and E7-BMP-2 peptide via calcium chelation to mineralized nanofiber fragments for alveolar bone regeneration[J]. ACS Biomater Sci Eng, 2020,6(4):2368-2375.
doi: 10.1021/acsbiomaterials.0c00145 |
[43] |
YU H, CHEN X J, CAI J, et al. Novel porous three-dimensional nanofibrous scaffolds for accelerating wound healing[J]. Chem Eng J, 2019,369:253-262.
doi: 10.1016/j.cej.2019.03.091 |
[1] | GUO Fengyun, GUO Ziyi, GAO Lei, ZHENG Linjing. Preparation and properties of thermal bonded fibrous artificial blood vessels [J]. Journal of Textile Research, 2021, 42(06): 46-50. |
[2] | DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56. |
[3] | CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62. |
[4] | LIU Xiaoqian, CHEN Yu, ZHOU Huimin, YAN Yuan, XIA Xin. Preparation of polyacrylonitrile conductive nanofiber yarn grafted with acrylic acid using plasma technology [J]. Journal of Textile Research, 2021, 42(05): 109-114. |
[5] | WANG Chunhong, LI Ming, LONG Bixuan, CAI Yingjie, WANG Lijian, ZUO Qi. Preparation and performance of polyvinyl alcohol/sodium alginate/berberine medical dressing [J]. Journal of Textile Research, 2021, 42(05): 16-22. |
[6] | ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang, CHEN Wenxing. Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion [J]. Journal of Textile Research, 2021, 42(05): 9-15. |
[7] | ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45. |
[8] | YU Meiqiong, YUAN Hongmei, CHEN Lihui. Rheological properties of cellulose/LiCl/ N, N-dimethylacetamide solution [J]. Journal of Textile Research, 2021, 42(05): 23-30. |
[9] | ZHAO Xinzhe, WANG Shaoxia, GAO Jing, WANG Lu. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes [J]. Journal of Textile Research, 2021, 42(04): 33-41. |
[10] | CHENG Yue, AN Qi, LI Dawei, FU Yijun, ZHANG Wei, ZHANG Yu. Preparation of SiO2 in-situ doped polyvinylidene fluoride nanofiber membrane and its properties [J]. Journal of Textile Research, 2021, 42(03): 71-76. |
[11] | ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49. |
[12] | XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43. |
[13] | GUO Xuesong, GU Jiayi, HU Jianchen, WEI Zhenzhen, ZHAO Yan. Preparation and properties of polyacrylonitrile/carboxyl styrene butadiene latex composite nanofibrous membranes [J]. Journal of Textile Research, 2021, 42(02): 34-40. |
[14] | CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174. |
[15] | WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29. |
|