Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 1-8.doi: 10.13475/j.fzxb.20210106008

• Invited Paper •     Next Articles

Preparation and biomedical applications of electrospun short fibers

ZHANG Beilei, SHEN Mingwu, SHI Xiangyang()   

  1. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
  • Received:2021-01-25 Revised:2021-02-15 Online:2021-05-15 Published:2021-05-20
  • Contact: SHI Xiangyang E-mail:xshi@dhu.edu.cn

Abstract:

Traditional electrospun nanofibers are often used as tissue engineering scaffolds to repair defects, which often need invasive implantation by surgery, greatly limiting their applications in biomedical fields. In order to promote the development and applications of electrospinning technology, this paper reviewed the preparation and functionalization methods of electrospun short fibers, the biomedical applications of functional short fiber in diagnosis and therapy, and tissue engineering. Electrospun short fibers have received great attention and can be prepared by adjusting process parameters and subsequent processing. Electrospun short fibers retain their intrinsic functions of electrospun nanofiber membranes, they can avoid the invasion and trauma caused by the implantation of fiber membranes because of their small size and monodispersity. The challenges and future development prospects of electrospun short fibers in biomedical fields were also analyzed.

Key words: electrospinning, nanofiber, functional short fiber, diagnostic testing, tumor therapy, tissue engineering

CLC Number: 

  • TS101

Tab.1

Summary of preparation and functionalization of electrospun short fibers"

基底聚合物纤维 制备方法 功能物质 功能化方法 功能 参考文献
PLGA 冷冻切片 SPION 物理掺杂 磁响应,指导细胞行为 [24]
PAN 均质处理 Fe3O4纳米颗粒、GO 物理掺杂 提高生物安全性,指导细胞行为 [26]
BG 超声破碎 Sr(NO3)2、CuCl2 物理掺杂 促进新骨和血管生成 [11]
PELA 冷冻切片 HCPT 物理掺杂 抗肿瘤(化疗) [27]
CDM/PELA 冷冻切片 PMCPT 物理掺杂 抗肿瘤(靶向识别和还原刺激响应) [28]
PLA-cdm 冷冻切片 PMCPT 化学键合 抗肿瘤(靶向识别和还原刺激响应) [29]
PLLA 冷冻切片 GDNF 化学键合 促进细胞存活和轴突生长 [30]
PEI/PVA 均质处理 Fe3O4@PEI、 DNA适配体 综合改性 捕获和分离CTCs [31]
PCL/gelatin 冷冻切片、超声破碎 GelMA、BMP-2、QK 综合改性 促进新骨和血管生成 [25]

Fig.1

Schematic illustration of fabrication of PCL-PEG-PCL TNSs by a four-step process"

[1] SILL T J, VON RECUM H A. Electrospinning: applications in drug delivery and tissue engineering[J]. Biomaterials, 2008,29(13):1989-2006.
doi: 10.1016/j.biomaterials.2008.01.011
[2] LI D, XIA Y. Electrospinning of nanofibers: reinventing the wheel?[J]. Adv Mater, 2004,16(14):1151-1170.
doi: 10.1002/(ISSN)1521-4095
[3] XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chem Rev, 2019,119(8):5298-5415.
doi: 10.1021/acs.chemrev.8b00593
[4] ZHAO J, CUI W. Functional electrospun fibers for local therapy of cancer[J]. Adv Fiber Mater, 2020,2(5):229-245.
doi: 10.1007/s42765-020-00053-9
[5] HUANG W, XIAO Y, SHI X. Construction of electrospun organic/inorganic hybrid nanofibers for drug delivery and tissue engineering applications[J]. Adv Fiber Mater, 2019,1:32-45.
doi: 10.1007/s42765-019-00007-w
[6] HU J, KAI D, YE H, et al. Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering[J]. Mater Sci Eng C-Mater Biol Appl, 2017,70:1089-1094.
doi: 10.1016/j.msec.2016.03.035
[7] QIU Q, WU J, QUAN Z, et al. Electrospun nanofibers of polyelectrolyte-surfactant complexes for antibacterial wound dressing application[J]. Soft Matter, 2019,15(48):10020-10028.
doi: 10.1039/C9SM02043H
[8] ZHAO Y L, FAN Z Y, SHEN M W, et al. Hyaluronic acid-Functionalized electrospun polyvinyl alcohol/polyethyleneimine nanofibers for cancer cell capture applications[J]. Adv Mater Interfaces, 2015,2(15):1500256.
doi: 10.1002/admi.201500256
[9] MA B, XIE J, JIANG J, et al. Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration[J]. Nanomedicine, 2013,8(9):1459-1481.
doi: 10.2217/nnm.13.132
[10] ZHANG H, LIU Y, CHEN M, et al. Shape effects of electrospun fiber rods on the tissue distribution and antitumor efficacy[J]. J Controlled Release, 2016,244:52-62.
doi: 10.1016/j.jconrel.2016.05.011
[11] WENG L, BODA S K, WANG H, et al. Novel 3D hybrid nanofiber aerogels coupled with BMP-2 peptides for cranial bone regeneration[J]. Adv Healthcare Mater, 2018,7(10):1701415.
doi: 10.1002/adhm.v7.10
[12] WEI J, XIA T, CHEN W, et al. Glucose and lipid metabolism screening models of hepatocyte spheroids after culture with injectable fiber fragments[J]. J Tissue Eng Regen Med, 2020,14(6):774-788.
doi: 10.1002/term.v14.6
[13] SCHOLTEN E, DHAMANKAR H, BROMBERG L, et al. Electrospray as a tool for drug micro-and nanoparticle patterning[J]. Langmuir, 2011,27(11):6683-6688.
doi: 10.1021/la201065n
[14] FATHONA I W, YABUKI A. A simple one-step fabrication of short polymer nanofibers via electrospinning[J]. J Mater Sci, 2014,49(9):3519-3528.
doi: 10.1007/s10853-014-8065-y
[15] LUO C J, STRIDE E, STOYANOV S, et al. Electrospinning short polymer micro-fibres with average aspect ratios in the range of 10-200[J]. J Polym Res, 2011,18(6):2515-2522.
doi: 10.1007/s10965-011-9667-6
[16] LI P, XI Y, LI K, et al. Fabrication and properties of electrospun magnetoelectric graphene/Fe3O4/poly(lactic-co-glycolic acid) short nanofibers[J]. J Nanosci Nanotechnol, 2019,19(1):170-175.
doi: 10.1166/jnn.2019.16400
[17] LI Y, CAO L, YIN X, et al. Semi-interpenetrating polymer network biomimetic structure enables superelastic and thermostable nanofibrous aerogels for cascade filtration of PM2.5[J]. Adv Funct Mater, 2020,30(14):1910426.
doi: 10.1002/adfm.v30.14
[18] YOSHIKAWA C, ZHANG K, ZAWADZAK E, et al. A novel shortened electrospun nanofiber modified with a concentrated polymer brush[J]. Sci Technol Adv Mater, 2019,12(1):015003.
doi: 10.1088/1468-6996/12/1/015003
[19] BODA S K, CHEN S, CHU K, et al. Electrospraying electrospun nanofiber segments into injectable microspheres for potential cell delivery[J]. ACS Appl Mater Interfaces, 2018,10(30):25069-25079.
doi: 10.1021/acsami.8b06386
[20] SAWAWI M, WANG T Y, NISBET D R, et al. Scission of electrospun polymer fibres by ultrasonication[J]. Polymer, 2013,54(16):4237-4252.
doi: 10.1016/j.polymer.2013.05.060
[21] FRIEDEMANN K, CORRALES T, KAPPL M, et al. Facile and large-scale fabrication of anisometric particles from fibers synthesized by colloid-electrospinning[J]. Small, 2012,8(1):144-153.
doi: 10.1002/smll.201101247
[22] LI H, WAN H, XIA T, et al. Therapeutic angiogenesis in ischemic muscles after local injection of fragmented fibers with loaded traditional Chinese medicine[J]. Nanoscale, 2015,7(30):13075-13087.
doi: 10.1039/C5NR02005K
[23] WEI J, LEI D, CHEN M, et al. Engineering HepG2 spheroids with injectable fiber fragments as predictable models for drug metabolism and tumor infiltration[J]. J Biomed Mater Res Part B, 2020,108(8):3331-3344.
doi: 10.1002/jbm.b.v108.8
[24] OMIDINIA-ANARKOLI A, BOESVELD S, TUVSHINDORJ U, et al. An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells[J]. Small, 2017,13(36):1702207.
doi: 10.1002/smll.v13.36
[25] JOHN J V, CHOKSI M, CHEN S, et al. Tethering peptides onto biomimetic and injectable nanofiber microspheres to direct cellular response[J]. Nanomedicine, 2019,22:102081.
[26] FENG Z Q, SHI C, ZHAO B, et al. Magnetic electrospun short nanofibers wrapped graphene oxide as a promising biomaterials for guiding cellular behavior[J]. Mater Sci Eng C-Mater Biol Appl, 2017,81:314-320.
doi: 10.1016/j.msec.2017.08.015
[27] WEI J, LUO X, CHEN M, et al. Spatial distribution and antitumor activities after intratumoral injection of fragmented fibers with loaded hydroxycamptothecin[J]. Acta Biomater, 2015,23:189-200.
doi: 10.1016/j.actbio.2015.05.020
[28] HE N, CHEN Z, YUAN J, et al. Tumor pH-Responsive release of drug-conjugated micelles from fiber fragments for intratumoral chemotherapy[J]. ACS Appl Mater Interfaces, 2017,9(38):32534-32544.
doi: 10.1021/acsami.7b09519
[29] CHEN Z, LIU W, ZHAO L, et al. Acid-labile degradation of injectable fiber fragments to release bioreducible micelles for targeted cancer therapy[J]. Biomacromolecules, 2018,19(4):1100-1110.
doi: 10.1021/acs.biomac.7b01696
[30] WANG T Y, BRUGGEMAN K F, KAUHAUSEN J A, et al. Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson's disease[J]. Biomaterials, 2016,74:89-98.
doi: 10.1016/j.biomaterials.2015.09.039
[31] XIAO Y, LIN L, SHEN M, et al. Design of DNA aptamer-functionalized magnetic short nanofibers for efficient capture and release of circulating tumor cells[J]. Bioconjugate Chem, 2020,31(1):130-138.
doi: 10.1021/acs.bioconjchem.9b00816
[32] ZHAO Y L, JIE X, SHI X Y, et al. Capturing cancer cells using hyaluronic acid-immobilized electrospun random or aligned PLA nanofibers[J]. Colloid Surf A-Physicochem Eng Asp, 2019,583:123978.
doi: 10.1016/j.colsurfa.2019.123978
[33] FEHM T, MULLER V, ALIX-PANABIERES C, et al. Micrometastatic spread in breast cancer: detection, molecular characterization and clinical relevance[J]. Breast Cancer Res, 2008,10(S1):1-10.
[34] YOON H J, SHANKER A, WANG Y, et al. Tunable thermal-sensitive polymer-graphene oxide composite for efficient capture and release of viable circulating tumor cells[J]. Adv Mater, 2016,28(24):4891-4897.
doi: 10.1002/adma.v28.24
[35] LEE A W, LIN F X, WEI P L, et al. Binary-blend fibber-based capture assay of circulating tumor cells for clinical diagnosis of colorectal cancer[J]. J Nanobiotechnol, 2018,16:4.
doi: 10.1186/s12951-017-0330-1
[36] LIU H, SUN N, DING P, et al. Fabrication of aptamer modified TiO2 nanofibers for specific capture of circulating tumor cells[J]. Colloid Surf B-Biointerfaces, 2020,191:110985.
doi: 10.1016/j.colsurfb.2020.110985
[37] FAN Z Y, ZHAO Y L, ZHU X Y, et al. Folic acid modified electrospun poly(vinyl alcohol)/polyethyleneimine nanofibers for cancer cell capture applications[J]. Chin J Polym Sci, 2016,34(6):755-765.
doi: 10.1007/s10118-016-1792-6
[38] YANG G, LI X, HE Y, et al. Capturing circulating tumor cells through a combination of hierarchical nanotopography and surface chemistry[J]. ACS Biomater Sci Eng, 2018,4(6):2081-2088.
doi: 10.1021/acsbiomaterials.7b00683
[39] HE P, LI Y, HUANG Z, et al. A mu.pngunctional coaxial fiber membrane loaded with dual drugs for guided tissue regeneration[J]. J Biomater Appl, 2020,34(8):1041-1051.
doi: 10.1177/0885328219894001
[40] XIE Z, PARAS C B, WENG H, et al. Dual growth factor releasing multi-functional nanofibers for wound healing[J]. Acta Biomater, 2013,9(12):9351-9359.
doi: 10.1016/j.actbio.2013.07.030
[41] HE P, ZHONG Q, GE Y, et al. Dual drug loaded coaxial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection[J]. Mater Sci Eng C-Mater Biol Appl, 2018,90:549-556.
doi: 10.1016/j.msec.2018.04.014
[42] BODA S K, WANG H J, JOHN J V, et al. Dual delivery of alendronate and E7-BMP-2 peptide via calcium chelation to mineralized nanofiber fragments for alveolar bone regeneration[J]. ACS Biomater Sci Eng, 2020,6(4):2368-2375.
doi: 10.1021/acsbiomaterials.0c00145
[43] YU H, CHEN X J, CAI J, et al. Novel porous three-dimensional nanofibrous scaffolds for accelerating wound healing[J]. Chem Eng J, 2019,369:253-262.
doi: 10.1016/j.cej.2019.03.091
[1] GUO Fengyun, GUO Ziyi, GAO Lei, ZHENG Linjing. Preparation and properties of thermal bonded fibrous artificial blood vessels [J]. Journal of Textile Research, 2021, 42(06): 46-50.
[2] DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56.
[3] CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62.
[4] LIU Xiaoqian, CHEN Yu, ZHOU Huimin, YAN Yuan, XIA Xin. Preparation of polyacrylonitrile conductive nanofiber yarn grafted with acrylic acid using plasma technology [J]. Journal of Textile Research, 2021, 42(05): 109-114.
[5] WANG Chunhong, LI Ming, LONG Bixuan, CAI Yingjie, WANG Lijian, ZUO Qi. Preparation and performance of polyvinyl alcohol/sodium alginate/berberine medical dressing [J]. Journal of Textile Research, 2021, 42(05): 16-22.
[6] ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang, CHEN Wenxing. Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion [J]. Journal of Textile Research, 2021, 42(05): 9-15.
[7] ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45.
[8] YU Meiqiong, YUAN Hongmei, CHEN Lihui. Rheological properties of cellulose/LiCl/ N, N-dimethylacetamide solution [J]. Journal of Textile Research, 2021, 42(05): 23-30.
[9] ZHAO Xinzhe, WANG Shaoxia, GAO Jing, WANG Lu. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes [J]. Journal of Textile Research, 2021, 42(04): 33-41.
[10] CHENG Yue, AN Qi, LI Dawei, FU Yijun, ZHANG Wei, ZHANG Yu. Preparation of SiO2 in-situ doped polyvinylidene fluoride nanofiber membrane and its properties [J]. Journal of Textile Research, 2021, 42(03): 71-76.
[11] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49.
[12] XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43.
[13] GUO Xuesong, GU Jiayi, HU Jianchen, WEI Zhenzhen, ZHAO Yan. Preparation and properties of polyacrylonitrile/carboxyl styrene butadiene latex composite nanofibrous membranes [J]. Journal of Textile Research, 2021, 42(02): 34-40.
[14] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[15] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!