Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 50-57.doi: 10.13475/j.fzxb.20210107408

• Fiber Materials • Previous Articles     Next Articles

Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers

ZHANG Aiqin1,2,3(), HAO Jiacheng1,3, WANG Zhi1,3, WANG Yongchao1,3, LIU Shuqiang1, DONG Hailiang3, JIA Husheng3, XU Bingshe3   

  1. 1. College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030006, China
    2. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi 030024, China
    3. Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • Received:2021-01-29 Revised:2021-11-26 Online:2022-03-15 Published:2022-03-29

Abstract:

In order to further improve the luminescence efficiency of bonded terbium polymer phosphors, the bonded phosphors poly(MMA-co-Tb(4-BBA)3(4-VP)2-co-NVK) were prepared by copolymerization with the complex Tb(4-BBA)3(4-VP)2, N-vinylcarbazole (NVK) and methyl methacrylate (MMA) employing the technology of pre-coordination and post-polymerization, and the corresponding green fluorescence fibers were prepared by electrospinning. The structure and properties of the phosphors and fibers were characterized. The results exhibit that the fluorescence fibers with different content of the complex Tb(4-BBA)3(4-VP)2 show bright green emission excited by light with 365 nm wave length. The fibers have smooth surface and uniform diameter. The fluorescenct intensity and micro-morphology of the fluorescence fibers in the same trend as the complex content, which establishes the internal relationship between the micro-morphology and fluorescent intensity of fibers. The fluorescent intensity of the fibers is 1.6 times higher than that of the corresponding phosphors, reaching the maximum at 14% of the complex Tb(4-BBA)3(4-VP)2 content. The brightness of LED devices fabricated with nanofiber membrane reaches 24 390 cd/m2, which is 2.6 times that of LEDs made using the conventional coating methods.

Key words: terbium, phoshor, electrospinning, fluorescence fiber, fluorescence enhancement mechanism

CLC Number: 

  • TQ342.8

Fig.1

Synthetic routes of bonded polymer phosphors PMNTb"

Fig.2

FT-IR spectra of bonded polymer phosphors and complex"

Fig.3

UV-vis absorption spectra of complex and bonded polymer phosphors"

Fig.4

Influence of spinning solution mass fraction on morphology of F-PMN matrix fibers"

Fig.5

Influence of complex mass fraction on morphology of fluorescent fibers"

Fig.6

Relationship between F-PMNTb fluorescence fibers diameter and complex mass fraction"

Fig.7

TG-DTG curves of bonded polymer phosphors PMNTb(a) and its fluorescence fibers(b)"

Fig.8

Fluorescence emission spectra(a) of fluorescent fibers with different complex mass fraction and relationship between luminescent intensity of bonded fluorescence fibers and complex mass fraction(b)"

Fig.9

Fluorescence emission spectra of phosphors and fluorescence fibers"

Fig.10

Fluorescence enhancement mechanism of F-PMNTb fluorescence fibers"

Fig.11

Fluorescence decay curves of phosphors(a) and fluorescence fibers(b)"

Fig.12

Electroluminescence spectra(a), its CIE chromaticity coordinates (b)and luminance-voltage curves(c)of FM-LED, ETFM-LED and EQFM-LED"

[1] PENG Chong, LI Guogang, GENG Dongling, et al. Fabrication and luminescence properties of one-dimensional ZnAl2O4 and ZnAl2O4:A3+(A=Cr, Eu, Tb) microfibers by electrospinning method[J]. Materials Research Bulletin, 2012,47(11):3592-3599.
doi: 10.1016/j.materresbull.2012.06.056
[2] ZHAO Xiaoyan, XU Xiao, LIU Yuan, et al. Luminescence performance of poly(aryl ether)s membranes with different morphologies[J]. Polymer Engineering & Science, 2018,58(11):1945-1954.
[3] CAMPOU-QUILES M, ISHII Y, SAKAI H, et al. Highly polarized luminescence from aligned conjugated polymer electrospun nanofibers[J]. Applied Physics Letters, 2008,92(21):192-195.
[4] LIU Dan, WANG Zhongang. Novel polyaryletherketones bearing pendant carboxyl groups and their rare earth complexes: part I: synjournal and characterization[J]. Polymer, 2008,49(23):4960-4967.
doi: 10.1016/j.polymer.2008.09.015
[5] LEE Changik, LIM Jinsoo, KIM Songho, et al. Synjournal and luminescent properties of a novel Eu-containing nanoparticle[J]. Polymer, 2006,47(15):5253-5258.
doi: 10.1016/j.polymer.2006.05.054
[6] WANG Dongmei, ZHANG Junhu, LIN Quan, et al. Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance[J]. J Mater Chem, 2003,13(9):2279-2284.
doi: 10.1039/b305024f
[7] KUMAR B, KAUR G, RAI S B. Sensitized green emission of terbium with dibenzoylmethane and 1, 10 phenanthroline in polyvinyl alcohol and polyvinyl pyrrolidone blends[J]. Spectrochim Acta A, 2017,187(1):75-81.
doi: 10.1016/j.saa.2017.06.025
[8] FENG Yu, LI Huanrong, GAN Quanying, et al. A transparent and luminescent ionogel based on organosilica and ionic liquid coordinating to Eu3+ ions[J]. J Mater Chem, 2010,20(5):972-975.
[9] LI Zhiqiang, WANG Guannan, WANG Yige, et al. Reversible phase transition of robust luminescent hybrid hydrogels[J]. Angewandte Chemie International Edition, 2018,57(8):2194-2198.
doi: 10.1002/anie.v57.8
[10] ABUALREJAL Murad M A, ZOU Haifeng, CHEN Jie, et al. A facile synjournal and photoluminescence properties of SiO2:Tb3+ spherical nanoparticles[J]. Advances in Nanoparticles, 2017,6(2):33-47.
doi: 10.4236/anp.2017.62004
[11] LIU Yue, LI Dan, MA Qianli, et al. Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination[J]. Mater Sci: Mater Electron, 2016,27(11):11666-11673.
doi: 10.1007/s10854-016-5302-y
[12] 张爱琴, 王永超, 王芷, 等. 键合型铽聚合物PMNTb荧光纤维的微观形貌调控及防伪应用[J]. 太原理工大学学报, 2021,52(4):564-570.
ZHANG Aiqin, WANG Yongchao, WANG Zhi, et al. Microstructure control and anti-counterfeiting application of bonded terbium polymer PMNTb fluorescent fibers[J]. Journal of Taiyuan University of Technology, 2021,52(4):564-570.
[13] WANG Shiwei, XIE Guangbo, ZHANG Jingjing, et al. Structure, thermal and luminescence properties of Eu/Tb(BA)3 phen/PAN fibers fabricated by electrospinning[J]. Optical Materials, 2018,78:445-451.
doi: 10.1016/j.optmat.2018.02.020
[14] KARA Hulya, OYLUMLUOGLU G, COBAN Mustafa Burak. Photoluminescence properties of a new Sm(Ⅲ) complex/PMMA electrospun composite fibers[J]. Journal of Cluster Science, 2020,31(4) : 701-708.
doi: 10.1007/s10876-019-01677-7
[15] LI Weizou, TAO Ye, AN Guanghui, et al. One-dimensional luminescent composite nanofibers of Eu(TFI)3 TPPO/PVP prepared by electrospinning[J]. Dyes and Pigments, 2017,146:47-53.
doi: 10.1016/j.dyepig.2017.06.056
[16] 张爱琴, 王芷, 胥伟, 等. Eu(TTA)2(phen)MAA/PVA纳米复合纤维的制备及发光性能[J]. 太原理工大学学报, 2019,50(6):798-805.
ZHANG Aiqin, WANG Zhi, XU Wei, et al. Preparation and luminescence properties of Eu(TTA)2(phen) MAA/PVA nanocomposite fibers[J]. Journal of Taiyuan University of Technology, 2019,50(6):798-805.
[17] LI Dongxin, JIA Jing, WANG Bin, et al. Synjournal and luminescence properties of a novel Eu3+-containing polysiloxane copolymer[J]. Chemistry Select, 2018,3(21):5749-5755.
[18] SONG Qiusheng, ZHANG Kai, MA Haihong, et al. Preparation and characterization of fluorescent nanofibers derived from covalent linked PU/Eu(Cit) Phen[J]. Chinese Journal of Luminescence, 2011,32(5):499-504.
doi: 10.3788/fgxb
[19] GUO Junfang, GUO Bingxin, WU Jiangyu, et al. A three-dimensional supramolecular framework of silver(I), 2-phenyl-quinoline-4-carboxyl-ate and 4,4'-bipyridine[J]. Acta Crystallogr, Sect C: Cryst Struct Commun, 2013,69(7):742-744.
doi: 10.1107/S010827011301559X
[20] 赵宇轩, 陈艳君, 潘顾鑫, 等. 静电纺丝制备Tb-PEG+Eu-PEG/PANI/PAN荧光导电相变三功能复合纤维[J]. 高等学校化学学报, 2019,40(4):824-831.
ZHAO Yuxuan, CHEN Yanjun, PAN Guxin, et al. Preparation and performance of novel Tb-PEG+Eu-PEG/PANI/PAN luminescent-electrical-phase change composite fibers by electrospinning[J]. Chemical Journal of Chinese Universities, 2019,40(4):824-831.
[21] ZONG Xinhua, KIM Kwangsok, FANG Dufei, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J]. Polymer, 2002,43(16):4403-4412.
doi: 10.1016/S0032-3861(02)00275-6
[22] HARTMAN Ruppert Petrus Adrianus, BRUNNER Daniel, CAMELOT Damien Michel Andre, et al. Jet break-up in electrohydrodynamic atomization in the cone-jet mode[J]. Journal of Aerosol Science, 2000,31(1):65-95.
doi: 10.1016/S0021-8502(99)00034-8
[23] WANG Bin, ZHANG Aiqin, JIA Jing, et al. A novel red emitting polymeric complex as a directly film-forming phosphor applied in NUV-based LEDs[J]. Optical Materials, 2017,73:772-780.
doi: 10.1016/j.optmat.2017.09.045
[24] SINGH Bheeshma Pratap, SINGH Maheshwary, RAMAKRISHNA Venkata, et al. Improved photo-luminescence behaviour of Eu3+ activated CaMoO4 nanoparticles via Zn2+ incorporation[J]. RSC Advances, 2015,5(69):55977-55985.
doi: 10.1039/C5RA06692A
[25] XIA Younan, YANG Peidong, SUN Yugang, et al. One-dimensional nanostructures: synjournal, characterization, and applications[J]. Advanced Materials, 2010,15(5):353-389.
doi: 10.1002/adma.200390087
[1] JIN Xu, LIU Fang, DU Xuan, HUA Chao, GONG Xuzhong, ZHANG Xiuqin, WANG Bin. Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation [J]. Journal of Textile Research, 2022, 43(03): 201-209.
[2] ZHANG Yu, LIU Laijun, LI Chaojing, JIN Qiaoqiao, XIE Qianyang, LI Peilun, WANG Fujun, WANG Lu. Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability [J]. Journal of Textile Research, 2022, 43(03): 24-30.
[3] TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70.
[4] ZHOU Xiaoya, MA Dinghai, HU Chengye, HONG Jianhan, LIU Yongkun, HAN Xiao, YAN Tao. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarns [J]. Journal of Textile Research, 2022, 43(02): 110-115.
[5] XU Shilin, YANG Shiyu, ZHANG Yaru, HU Liu, HU Yi. Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes [J]. Journal of Textile Research, 2021, 42(12): 42-42.
[6] JIA Lin, WANG Xixian, LI Huanyu, ZHANG Haixia, QIN Xiaohong. Preparation and properties of polyacrylonitrile/BaTiO3 composite nanofibrous filter membrane [J]. Journal of Textile Research, 2021, 42(12): 34-41.
[7] WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33.
[8] ZHOU Yuanyuan, ZHENG Yuming, WU Xiaoqiong, SHAO Zaidong. Research progress of performance enhancement methods for electrospun nanofiber-based photocatalyst [J]. Journal of Textile Research, 2021, 42(11): 179-186.
[9] WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30.
[10] QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45.
[11] CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties [J]. Journal of Textile Research, 2021, 42(09): 46-51.
[12] ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56.
[13] YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68.
[14] YANG Zhi, LIU Chengkun, WU Hong, MAO Xue. Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2021, 42(07): 54-61.
[15] GUO Fengyun, GUO Ziyi, GAO Lei, ZHENG Linjing. Preparation and properties of thermal bonded fibrous artificial blood vessels [J]. Journal of Textile Research, 2021, 42(06): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!