Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (04): 187-193.doi: 10.13475/j.fzxb.20210201307
• Comprehensive Review • Previous Articles Next Articles
LU Qianqian1, TANG Junxiong2, LIU Yuanjun1,3,4(), ZHAO Xiaoming1,3,4
CLC Number:
[1] | 许迎东. 基于碳纳米管/硅橡胶复合材料的多层结构微波吸收性能研究[D]. 武汉: 华中科技大学, 2019: 2-4. |
XU Yingdong. Microwave absorption properties of multilayer structures based on carbon nanotubes/silicone rubber composites[D]. Wuhan: Huazhong University of Science and Technology, 2019: 2-4. | |
[2] | 张换换. 碳纳米管化学修饰碳纤维及其电磁特性研究[D]. 太原: 太原科技大学, 2016: 8-10. |
ZHANG Huanhuan. Study on the carbon nanotube chemically modified carbon fiber and its electromagnetic properties[D]. Taiyuan: Taiyuan University of Science and Technology, 2016: 8-10. | |
[3] | 李伟文. PAN/MWCNTs微纳米纤维膜的制备及其层合板复合材料的吸波性能研究[D]. 上海: 东华大学, 2015: 5-9. |
LI Weiwen. Preparation of PAN/MWCNTs micro/nano-fiber membrane and microwave absorbing performance of its laminated structure composites[D]. Shanghai: Donghua University, 2015: 5-9. | |
[4] | 陈明东. 碳纳米管复合材料微波吸收性能的模拟计算及其优化[D]. 广州: 广东工业大学, 2015: 3-7. |
CHEN Mingdong. Simulation and optimization on micro wave absorbing properties of carbon nanotubes composite materials[D]. Guangzhou: Guangdong University of Technology, 2015: 3-7. | |
[5] | 李紫芳. 基于FDTD方法的碳系填充型复合材料的研究[D]. 成都: 电子科技大学, 2017: 6-15. |
LI Zifang. Research of carbon-based composite materials based on FDTD method[D]. Chengdu: University of Electronic Science and Technology, 2017: 6-15. | |
[6] | 吴楠楠. 磁性纳米复合材料的制备及其电磁波吸收性能[D]. 济南: 山东大学, 2019: 18-19. |
WU Nannan. Preparation and electromagnetic wave absorption properties of magnetic nanocomposites[D]. Jinan: Shandong University, 2019: 18-19. | |
[7] | 张雨. 植入磁性颗粒的掺氮碳纳米管制备及其吸波性能研究[D]. 南京: 南京大学, 2018: 60-65. |
ZHANG Yu. Preparation and microwave absorption of magnetical particles/nitrogen-doped carbon nano-tubes[D]. Nanjing: Nanjing University, 2018: 60-65. | |
[8] | 臧充光, 张玉龙, 朱祥东, 等. 镀镍碳纳米管/环氧树脂复合材料的吸波性能研究[J]. 中国科技论文, 2016, 11(16): 1872-1877. |
ZANG Chongguang, ZHANG Yulong, ZHU Xiangdong, et al. Study on the absorption performance of nike-plated MWCNTs/epoxy composites[J]. China Science Paper, 2016, 11(16): 1872-1877. | |
[9] |
ZHU X Y, QIU H F, CHEN P, et al. Environmentally friendly synthesis of velutipes-shaped Ni@CNTs composites as efficient thin microwave absorbers[J]. Journal of Electronic Materials, 2020, 49(9): 5368-5378.
doi: 10.1007/s11664-020-08248-x |
[10] |
ZHAO H Q, CHEN Y, LIANG X H, et al. Constructing large interconnect conductive networks: an effective approach for excellent electromagnetic wave absorption at gigahertz[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2155-2164.
doi: 10.1021/acs.iecr.7b05141 |
[11] |
LV H L, JI G B, ZHANG H Q, et al. Facile synthesis of a CNT@Fe@SiO2 ternary composite with enhanced microwave absorption performance[J]. RSC Advances, 2015, 5(94): 76836-76843.
doi: 10.1039/C5RA11162E |
[12] | XU X Q, RAN F T, FAN Z M, et al. Cactus-inspired bimetallic metal-organic frameworks derived 1D-2D hierarchical Co/N-decorated carbon architecture towards enhanced electromagnetic wave absorbing perfor-mance[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13564-13573. |
[13] |
QIU Y, YANG H B, MA L, et al. In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2021, 581: 783-793.
doi: 10.1016/j.jcis.2020.07.151 |
[14] |
CHENG Y, CAO J M, LV H L, et al. In situ regulating aspect ratio of bamboo-like CNTs via CoxNi1-x-catalyzed growth to pursue superior microwave attenuation in X-band[J]. Inorganic Chemistry Frontiers, 2019, 6(1): 309-316.
doi: 10.1039/C8QI01102H |
[15] |
YANG H B, WEN B, WANG L, et al. Carbon nanotubes modified CoZn/C composites with rambutan-like applied to electromagnetic wave absorption[J]. Applied Surface Science, 2020, 509: 145336.
doi: 10.1016/j.apsusc.2020.145336 |
[16] |
LIU Y, LAI J, SHI J F, et al. Effects of the deposition temperature on the microwave-absorption performance of Fe/CNT composites[J]. New Carbon Materials, 2020, 35(4): 428-435.
doi: 10.1016/S1872-5805(20)60500-5 |
[17] |
NING M Q, LI J B, KUANG B Y, et al. One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M=Fe, Co, Ni) for efficient microwave absorption[J]. Applied Surface Science, 2018, 447: 244-253.
doi: 10.1016/j.apsusc.2018.03.242 |
[18] |
ZHANG X C, ZHANG X, YUAN H R, et al. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption[J]. Chemical Engineering Journal, 2020, 383: 123208.
doi: 10.1016/j.cej.2019.123208 |
[19] |
WANG L, WEN B, QIU Y, et al. Structurally designed hierarchical carbon nanotubes vertically anchored on elliptical-like carbon nanosheets with enhanced conduction loss as high-performance electromagnetic wave absorbent[J]. Synthetic Metals, 2020, 261: 116301.
doi: 10.1016/j.synthmet.2020.116301 |
[20] | 鲁世斌. MOFs衍生的金属/金属氧化物与MWCNTs复合材料制备及电磁波吸收性能研究[D]. 合肥: 安徽大学, 2019: 8-11. |
LU Shibin. Study on preparation and electromagnetic wave absorption properties of MOF-derived metal/metal oxides and multi-walled carbon nanotubes compo-sites[D]. Hefei: Anhui University, 2019: 8-11. | |
[21] |
LIANG C, YU Y, CHEN C L, et al. Rational design of CNTs with encapsulated Co nanospheres as superior acidic-and-basic-resistant microwave absorber[J]. Dalton Transactions, 2018, 47(33): 11554-11562.
doi: 10.1039/C8DT02037J |
[22] | YANG N, LUO Z X, ZHU G R, et al. Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with hollow skeleton toward superior microwave absorption[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35987-35998. |
[23] |
WANG L, WEN B, BAI X Y, et al. NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption[J]. ACS Applied Nano Materials, 2019, 2(12): 7827-7838.
doi: 10.1021/acsanm.9b01842 |
[24] | 庞慧芳. 纳米碳-锰氧化物复合材料的合成及其吸波性能研究[D]. 大连: 大连理工大学, 2019: 11-14. |
PANG Huifang. Synthesis and microwave absorption properties of carbon-manganese oxide nanocompo-sites[D]. Dalian: Dalian University of Technology, 2019: 11-14. | |
[25] |
YAN X Y, DUAN Y L, HOU L Q, et al. Enhanced electromagnetic wave absorption of worm-like hollow porous MnO@C/CNTs composites[J]. Journal of Alloys and Compounds, 2019, 797: 1086-1094.
doi: 10.1016/j.jallcom.2019.05.123 |
[26] |
GAO X H, WU X Y, QIU J, et al. High electromagnetic waves absorbing performance of a multilayer-like structure absorber containing activated carbon hollow porous fibers-carbon nanotubes and Fe3O4 nanoparticles[J]. Advanced Electronic Materials, 2018, 4(5): 1700565.
doi: 10.1002/aelm.201700565 |
[27] |
WANG Y, DI X C, WU X M, et al. MOF-derived nanoporous carbon/Co/Co3O4/CNTs/RGO composite with hierarchical structure as a high-efficiency electromagnetic wave absorber[J]. Journal of Alloys and Compounds, 2020, 846: 156215.
doi: 10.1016/j.jallcom.2020.156215 |
[28] |
ZHAO T K, JI X L, JIN W B, et al. Electromagnetic wave absorbing properties of aligned amorphous carbon nanotube/BaFe12O19 nanorod composite[J]. Journal of Alloys and Compounds, 2017, 703: 424-430.
doi: 10.1016/j.jallcom.2017.02.014 |
[29] |
WANG C, MU C P, XIANG J Y, et al. Microwave synthesized In2S3@CNTs with excellent properties in lithiumion battery and electromagnetic wave absorp-tion[J]. Chinese Journal of Chemistry, 2018, 36(2): 157-161.
doi: 10.1002/cjoc.201700499 |
[30] | 赵鹏飞, 耿浩然, 范浩军, 等. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208. |
ZHAO Pengfei, GENG Haoran, FAN Haojun, et al. Structure and property of microwave absorber based on molybdenum disulfide/multi-walled carbon nanotube/butadiene styrene rubber[J]. Materials Reports, 2020, 34(14): 14204-14208. | |
[31] | 孙远. 二硫化相基纳米复合结构的设计、制备及微波吸收性能研究[D]. 南京: 南京大学, 2019: 106-108. |
SUN Yuan. Design, preparation and microwave absorption performance of MoS2 based integrated nanostructures[D]. Nanjing: Nanjing University, 2019: 106-108. | |
[32] |
ZHANG D Q, WANG H H, CHENG J Y, et al. Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance[J]. Applied Surface Science, 2020, 528: 147052.
doi: 10.1016/j.apsusc.2020.147052 |
[33] |
ZHAO G L, GAO F, LI K, et al. Using natural cotton fibers to synthesize carbon nanotubes and electromagnetic wave absorption properties[J]. Materials Science and Engineering B: Advanced Functional Solid-State Materials, 2017, 224: 61-68.
doi: 10.1016/j.mseb.2017.07.006 |
[34] |
YANG M L, YUAN Y, LI Y, et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework[J]. Carbon, 2020, 161: 517-527.
doi: 10.1016/j.carbon.2020.01.073 |
[35] | 汪心坤, 程兆刚, 赵芳, 等. MWCNTs/Zn0.96Co0.04O复合纳米纤维的电纺制备及其红外/雷达兼容隐身性能[J]. 稀有金属材料与工程, 2020, 49(12): 4262-4270. |
WANG Xinkun, CHENG Zhaogang, ZHAO Fang, et al. Preparation of MWCNTs/Zn0.96Co0.04O composite nanofibers by electrospinning and their IR/radar compatible stealth properties[J]. Rare Metal Materials and Engineering, 2020, 49(12): 4262-4270. | |
[36] | 王荣超. 静电纺Fe3O4/聚芳醚酮纳米复合纤维膜及电磁吸波性能[D]. 沈阳: 沈阳航空航天大学, 2016: 46-47. |
WANG Rongchao. Fabrication and electromagnetic microwave absorption properties of electrospun ferrite/PEK-C composite nanofiber membranes[D]. Shenyang: Shenyang Aerospace University, 2016: 46-47. | |
[37] |
FENG Y R, GUO X, LU J B, et al. Enhanced electromagnetic wave absorption performance of SiCN(Fe) fibers by in-situ generated Fe3Si and CNTs[J]. Ceramics International, 2021, 47(14): 19582-19594.
doi: 10.1016/j.ceramint.2021.03.296 |
[38] | 李焕然, 马关胜, 杨智伟, 等. Fe3O4/CNTs@Cf复合材料的制备及其吸波性能的研究[J]. 功能材料, 2021, 52(4): 4023-4029. |
LI Huanran, MA Guansheng, YANG Zhiwei, et al. Preparation and absorption properties of Fe3O4/CNTs@Cf composites[J]. Journal of Functional Materials, 2021, 52(4): 4023-4029. | |
[39] | 李宝毅, 张换换, 王东红, 等. 氧化处理对碳纤维表面碳纳米管修饰效果及其电磁性能的影响研究[J]. 功能材料, 2018, 49(10): 10075-10079. |
LI Baoyi, ZHANG Huanhuan, WANG Donghong, et al. Effect of oxidation treatment on the modification effect and electromagnetic properties of carbon nanotubes on carbon fibers[J]. Journal of Functional Materials, 2018, 49(10): 10075-10079. | |
[40] |
WU F, LIU Z H, XIU T, et al. Fabrication of ultralight helical porous carbon fibers with CNTs-confined Ni nanoparticles for enhanced microwave absorption[J]. Composites Part B: Engineering, 2021, 215: 108814.
doi: 10.1016/j.compositesb.2021.108814 |
[41] | XU J M, XIA L, LUO J H, et al. The high-performance electromagnetic wave absorbing CNT/SiCf composites: synthesis, tuning, and mechanism[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20775-20784. |
[42] | 段佳佳, 汪秀琛, 李亚云, 等. 混合型吸波涂层对电磁屏蔽织物吸波性能的影响[J]. 毛纺科技, 2019, 47(6): 38-42. |
DUAN Jiajia, WANG Xiuchen, LI Yayun, et al. Effect of hybrid absorbing coating on microwave absorbing properties of electromagnetic shielding fabric[J]. Wool Textile Journal, 2019, 47(6): 38-42. | |
[43] | ZOU L H, SHEN J H, XU Z Z, et al. Electromagnetic wave absorbing properties of cotton fabric with carbon nanotubes coating[J]. Fibers & Textiles in Eastern Europe, 2020, 28(5): 82-90. |
[1] | XU Xiaotong, JIANG Zhenlin, ZHENG Qinchao, ZHU Keyu, WANG Chaosheng, KE Fuyou. Effect of thermal conductive structure on non-isothermal crystallization behavior of polyethylene terephthalate [J]. Journal of Textile Research, 2022, 43(03): 44-49. |
[2] | GUO Zijiao, LI Yue, ZHANG Rui, LU Zan. Preparation and properties of polyaniline/Ti3C2Tx/carbon nanotube composite fiber-based electrodes [J]. Journal of Textile Research, 2022, 43(02): 74-80. |
[3] | WAN Zhenkai, JIA Minrui, BAO Weichen. Optimal configuration of embedded position and number of carbon nanotube yarns in 3-D braided composites [J]. Journal of Textile Research, 2021, 42(09): 76-82. |
[4] | TAN Jiangtao, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress of textile composite helmet shell against low-velocity impact [J]. Journal of Textile Research, 2021, 42(08): 185-193. |
[5] | ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56. |
[6] | DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56. |
[7] | TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers [J]. Journal of Textile Research, 2021, 42(05): 168-177. |
[8] | WANG Lu, HAN Xue, LOU Lin, HE Linghua, ZHOU Xiaohong. Development of electric-heating protective gloves and ergonomic experiments under extreme cold environment [J]. Journal of Textile Research, 2021, 42(05): 150-154. |
[9] | ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126. |
[10] | ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49. |
[11] | XIA Yun, LÜ Wangyang, CHEN Wenxing. Catalytic degradation of dye by metal phthalocyanine/multi-walled carbon nanotubes under simulated solar light [J]. Journal of Textile Research, 2020, 41(12): 94-101. |
[12] | LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173. |
[13] | LI Peng, WAN Zhenkai, JIA Minrui. Damage monitoring of composite materials based on twist energy of carbon nanotube yarns [J]. Journal of Textile Research, 2020, 41(04): 58-63. |
[14] | ZHANG Jiao, GAO Xuefeng, WANG Yuzhou, LIU Haihui, ZHANG Xingxiang. Preparation and properties of polyamide 66/amino-functionalized multi-walled carbon nanotubes fibers [J]. Journal of Textile Research, 2019, 40(11): 1-8. |
[15] | GUO Xinyue, YANG Zhanping, SONG Xiaomei, XU Yang. Preparation and properties of n-eicosane/cellulose diacetate phase change filter material [J]. Journal of Textile Research, 2019, 40(09): 15-21. |
|