Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 42-42.doi: 10.13475/j.fzxb.20210201807

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes

XU Shilin1,2, YANG Shiyu3, ZHANG Yaru1,2, HU Liu1,2, HU Yi1,2()   

  1. 1. Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Engineering Research Center for Eco-Dying and Finishing of Textiles,Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Zhejiang Technology Lixin Materials Co., Ltd., Shaoxing, Zhejiang 312030, China
  • Received:2021-02-05 Revised:2021-09-07 Online:2021-12-15 Published:2021-12-29
  • Contact: HU Yi E-mail:huyi-v@zstu.edu.cn

Abstract:

Aiming at the problems of low mechanical properties and poor-hydrophobicity of nanofiber membrane, thermoplastic polyurethane (TPU) nanofiber membrane was prepared by electrospinning,and the TPU/tefluororone amorphous fluoropolymer (Teflon AF) superhydrophobic nanofiber membrane was obtained by impregnating in Teflon AF solution. The influence of immersion concentration and dipping time on the hydrophobicity and mechanical properties of the nanofiber membranes were analyzed by scanning electron microscope, electronic universal tester, and video contact angle tensiometer. The results show that when the mass fraction of Teflon AF is increased to 6%, the water contact angle of the nanofiber membrane reaches 150°, and the oil contact angle becomes lower than 3°, showing a superhydrophobicity. The mechanical strength of the nanofiber membrane were not affected by the impregnation, and the modulus of elasticity displayed an increase to 5.09 Pa. The nanofiber membrane implies good potential application value in filter media and biomedical fields.

Key words: electrospinning, thermoplastic polyurethane, tefluororone amorphous fluoropolymer, superhydrophobic nanofiber, self-cleaning material, filter material

CLC Number: 

  • TQ340.64

Tab.1

Preparation scheme for nanofiber film of TPU/Teflon AF"

样品编号 特氟龙AF溶液质量分数/% 浸渍时间/h
1# 0.0 0
2# 2.0 2
3# 6.0 2
4# 10.0 2
5# 2.0 6
6# 6.0 6
7# 10.0 6
8# 2.0 12
9# 6.0 12
10# 10.0 12

Fig.1

SEM images of TPU nanofiber membranes before and after impregnated in Teflon AF solution"

Tab.2

Hydrophobic/lipophilic characteristics of nanofiber membrane with different immersion concentration and time(°)"

样品编号 水接触角 水滚动角 油接触角
1# 38.6 1.3
2# 126.9 6.0 1.2
3# 136.0 4.0 1.3
4# 141.6 4.0 2.2
5# 140.5 5.0 1.5
6# 146.0 5.0 1.6
7# 150.2 4.0 1.7
8# 150.4 4.0 1.4
9# 150.5 4.0 1.3
10# 156.5 4.0 1.3

Tab.3

Surface tension of two typical liquid"

液体 γL/(mJ·m-1) γ L D/(mJ·m-1) γ L p/(mJ·m-1) 性质
蒸馏水 72.8 21.8 51 极性
二碘甲烷 50.8 50.8 0 非极性

Fig.2

Water and diiodomethane contact angle of TPU nanofiber membrane before and after impregnated in Teflon AF solution. (a) 1# water contact angle;(b) 9# water contact angle;(c) 1# diiodomethane contact angle;(d) 9# diiodomethane contact angle"

Fig.3

Dynamic behavior of water droplets falling on surface of TPU/Teflon AF nanofiber membranes. (a) Water droplets falling on surface of nanofiber membrane;(b) Water droplets contact surface of nanofiber membrane;(c) Water droplets bounce from surface of fiber membrane;(d) Water droplets rest on fibrous membrane surface"

Fig.4

Surface image of TPU/Teflon AF nanofiber membrane subjected to water shooting from 45°"

Fig.5

Stress-strain curves of TPU nanofiber membrane before and after impregnated in Teflon AF solution"

Fig.6

Variation of permeability with nanofiber membrane thickness"

Fig.7

Changes of quality with time of TPU nanofiber membrane before and after impregnated in Teflon AF solution"

Fig.8

Water droplets remove dust from surface of nanofiber membrane"

[1] 钱伯章. 世界热塑性弹性体的现状和发展趋势[J]. 世界橡胶工业, 2005, 32(5):40-46.
QIAN Bozhang. The status quo and development trend of the world's thermoplastic elastomers[J]. The World Rubber Industry, 2005, 32(5):40-46.
[2] 梁诚. 热塑性弹性体生产现状与发展趋势[J]. 石油化工技术经济, 2005, 21(1):35-40.
LIANG Cheng. Thermoplastic elastomer production status and development trend[J]. Techno-Economics in Petrochemicals, 2005, 21(1):35-40.
[3] TOHEED Shaikh. 全球聚氨酯市场[J]. 中国涂料, 2020, 35(4):74-75.
TOHEED Shaikh. Global market for polyurethane[J]. China Coating, 2020, 35(4):74-75.
[4] 李岩, 仇天宝, 周治南, 等. 静电纺丝纳米纤维的应用进展[J]. 材料导报, 2011, 25(17):84-88.
LI Yan, QIU Tianbao, ZHOU Zhinan, et al. Application of electrospinning nanofibers[J]. Materials Reports, 2011, 25(17):84-88.
[5] 孟庆杰, 张兴祥. 静电法超细纤维的性能与应用研究[J]. 高分子材料科学与工程, 2004, 20(6):15-19.
MENG Qingjie, ZHANG Xingxiang. Research and application of electrospun ultra-fine fibers[J]. Polymer Materials Science and Engineering, 2004, 20(6):15-19.
[6] 申建鸣, 秦礼敏. 特氟纶纤维的特性与应用[J]. 国外纺织技术, 2001(1):8-10.
SHEN Jianming, QIN Limin. Characteristics and application of Teflon fiber[J]. Textile Technology Overseas, 2001(1):8-10.
[7] 鲍萍, 王秋美. 特氟纶纤维的制造、性能与应用[J]. 产业用纺织品, 2003, 21(4):35-37.
BAO Ping, WANG Qiumei. Manufacture, properties and application of Teflon fiber[J]. Technical Textiles, 2003, 21(4):35-37.
[8] VAZ C M, TUIJL S V, BOUTEN C, et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique[J]. Acta Biomaterialia, 2005, 1(5):575-582.
doi: 10.1016/j.actbio.2005.06.006
[9] 张丽, 王娇娜, 李从举. 静电纺丝热塑性聚氨酯纳米纤维的制备[J]. 聚氨酯工业, 2013, 28(3):29-31.
ZANG Li, WANG Jiaona, LI Congju. Preparation of electrospinning thermoplastic polyurethane nano-fibers[J]. Polyurethane Industry, 2013, 28(3):29-31.
[10] ALAWAJJI R A, GANESH K K, ZEID A N, et al. High temperature, transparent, superhydrophobic Teflon AF-2400/indium tin oxide nanocomposite thin films[J]. Nanotechnology, 2018, 30(17):175702.
doi: 10.1088/1361-6528/aaf262
[11] 周明, 王鸿博, 王银利, 等. 基于图像处理技术的纳米纤维膜孔隙率表征[J]. 纺织学报, 2012, 33(1):20-23.
ZHOU Ming, WANG Hongbo, WANG Yinli, et al. Characterization of the nanofiber membrane porosity based on image processing techniques[J]. Journal of Textile Research, 2012, 33(1):20-23.
[12] 吕鹏宇, 薛亚辉, 段慧玲. 超疏水材料表面液-气界面的稳定性及演化规律[J]. 力学进展, 2016, 46:179-225.
LÜ Pengyu, XUE Yahui, DUAN Huiling. Stability and evolution of surface liquid-air interface of superhydrophobic materials[J]. Progress in Mechanics, 2016, 46:179-225.
[13] 周颖, 姚理荣, 高强. 聚氨酯/聚偏氟乙烯共混膜防水透气织物的制备及其性能[J]. 纺织学报, 2014, 35(5):23-29.
ZHOU Ying, YAO Lirong, GAO Qiang. Fabrication and properties of polyurethane/polyvinylidene fluoride composite film waterproof and breathable fabric[J]. Journal of Textile Research, 2014, 35(5):23-29.
[14] SAGIT Shalel-Levanon, ABRAHAM Marmur. Validity and accuracy in evaluating surface tension of solids by additive approaches[J]. Journal of Colloid and Interface Science, 2003, 262:489-499.
pmid: 16256630
[15] 王玉浩, 马万彬, 周彦粉, 等. 静电纺聚氨酯纳米纤维膜的制备及其性能研究[J]. 塑料工业, 2019, 47(8):151-155.
WANG Yuhao, MA Wanbin, ZHOU Yanfen, et al. Preparation and properties of electrospun polyurethane nanofiber membrane[J]. Plastics Industry, 2019, 47(8):151-155.
[16] HAN D, STECKL A J. Superhydrophobic and oleophobic fibers by coaxial electrospinning[J]. Langmuir:The ACS Journal of Surfaces & Colloids, 2009, 25(16):9454-9462.
[1] JIA Lin, WANG Xixian, LI Huanyu, ZHANG Haixia, QIN Xiaohong. Preparation and properties of polyacrylonitrile/BaTiO3 composite nanofibrous filter membrane [J]. Journal of Textile Research, 2021, 42(12): 34-41.
[2] WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33.
[3] ZHOU Yuanyuan, ZHENG Yuming, WU Xiaoqiong, SHAO Zaidong. Research progress of performance enhancement methods for electrospun nanofiber-based photocatalyst [J]. Journal of Textile Research, 2021, 42(11): 179-186.
[4] WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30.
[5] QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45.
[6] CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties [J]. Journal of Textile Research, 2021, 42(09): 46-51.
[7] ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56.
[8] YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68.
[9] YANG Zhi, LIU Chengkun, WU Hong, MAO Xue. Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2021, 42(07): 54-61.
[10] GUO Fengyun, GUO Ziyi, GAO Lei, ZHENG Linjing. Preparation and properties of thermal bonded fibrous artificial blood vessels [J]. Journal of Textile Research, 2021, 42(06): 46-50.
[11] DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56.
[12] CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62.
[13] LIU Chaojun, LIU Junjie, DING Yike, MA Shaofeng, ZHANG Xiuqin, ZHANG Jianqing. Preparation and properties of expanded polytetrafluoroethylene membrane composites with high dust holding capacity for high efficiency air filtration [J]. Journal of Textile Research, 2021, 42(05): 31-37.
[14] ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers [J]. Journal of Textile Research, 2021, 42(05): 1-8.
[15] ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang, CHEN Wenxing. Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion [J]. Journal of Textile Research, 2021, 42(05): 9-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 114 -115 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .
[6] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[7] GU Da-qiang;NIE Lin. Reinforcement fabric knitting machine for plastic pressure hose[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 86 -88 .
[8] ZHONG Zhi-li;WANG Xun-gai. Application prospect of nanofibers[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 107 -110 .
[9] WAN Zhen-kai;LI Jing-dong. Feature of acoustic emission and failure analysis for three-dimensional braided composite material under compressive load[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 20 -24 .
[10] BAO Xiao-min;WANG Ya-ming. Image segmentation based on the minimum risk Bayes decision[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 33 -36 .