Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 21-27.doi: 10.13475/j.fzxb.20210201908

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of polyester/silica/orange active ingredient fiber

HUANG Xiaohua1, ZHOU Jialiang2(), CHI Shan1, LIU Yanming1, FU Guangwei3, HU Zexu2, XIANG Hengxue2, ZHU Meifang2   

  1. 1. Bestee Material (Qingdao) Co., Ltd., Qingdao, Shandong 266001, China
    2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    3. China Textile Engineering Society, Beijing 100025, China
  • Received:2021-02-07 Revised:2021-09-02 Online:2021-12-15 Published:2021-12-29
  • Contact: ZHOU Jialiang E-mail:zhoujialiang@dhu.edu.cn

Abstract:

In order to solve the problem of functional degradation caused by the loss of natural active ingredients in the production process of polyester fibers, the molecular-nesting technology was independently developed. The orange active ingredients obtained by supercritical CO2 extraction was loaded into mesoporous silica nanoparticles (MSNs) carrier to obtain the polyester/silica/orange active ingre-dient (PET/SiO2/O) fiber with good antibacterial and antiviral effects. The morphology, chemical structure, mechanical properties, active ingredient content, antibacterial and antiviral properties of the modified fiber were characterized and analyzed. The results show that the size, specific surface area and average pore diameter of the achieved MSNs are (100±5) nm, 729.7 m2/g and 2.55 nm, respectively, and the fracture strength of PET/SiO2/O fiber is 3.22 cN/dtex. The content of orange active ingredient naringin in PET/SiO2/O fiber is (0.41±0.05) mg/kg, the antibacterial rate is above 91%, and the antiviral rate is above 99%, which are significantly better than that of the common polyester fibers (p<0.01).

Key words: polyester, silica, orange active ingredient, molecular-nesting technology, supercritical fluent CO2 extraction, antibacterial fiber, antiviral property

CLC Number: 

  • TQ342.8

Fig.1

SEM (a) and TEM (b) image of SiO2 nanoparticles"

Fig.2

N2 adsorption-desorption isotherms (a) and pore size distribution (b) of SiO2 nanoparticles"

Fig.3

SEM images of PET/SiO2/O and PET/O fibers. (a)Surface image of PET/SiO2/O fiber; (b) Section image of PET/SiO2/O fiber; (c) Surface image of PET/O fiber; (d) Section image of PET/O fiber"

Fig.4

High performance liquid chromatograms of naringin standard, PET/SiO2/O and PET/O fiber"

Fig.5

Mechanical properties curves of PET/SiO2/O, PET/O and PET fibers"

Tab.1

Mechanical strength of different polyester fibers"

样品名称 断裂伸
长率/%
线密度/
dtex
断裂强度/
(cN·dtex-1)
PET纤维 10.21±0.51 144.00 4.15±0.06
PET/SiO2/O纤维 8.43±0.83 144.00 3.22±0.05
PET/O纤维 8.32±0.62 144.00 2.71±0.04

Tab.2

Antibacterial properties of modified polyester fiber against different strains"

菌种名称 PET纤维活菌
浓度平均值/
(CFU·mL-1)
PET/SiO2/O纤维 PET/O纤维 PET/SiO2纤维
活菌浓度平均
值/(CFU·mL-1)
平均抑
菌率/%
活菌浓度平均
值/(CFU·mL-1)
平均抑
菌率/%
活菌浓度平均
值/(CFU·mL-1)
平均抑
菌率/%
金黄色葡萄球菌 (1.56±0.07)×107 (1.53±0.09)×105 99.01±0.06 (2.01±0.07)×106 87.12±0.46 (1.53±0.06)×107
大肠杆菌 (1.81±0.08)×106 (1.44±0.05)×104 99.02±0.26 (3.07±0.11)×105 83.04±0.63 (1.80±0.12)×106
白色念珠菌 (2.51±0.05)×105 (2.07±0.09)×104 91.86±0.45 (4.67±0.09)×104 81.41±0.34 (2.46±0.12)×105

Tab.3

Antiviral properties to H1N1 of modified polyester fiber"

纤维名称 病毒滴度的对数
平均值 lgTCID50/(20 mL)
TCID50/(20 mL) 抗病毒活性值 抗病毒率/%
PET纤维 7.45±0.05 (2.81±0.31)×107
PET/SiO2/O纤维 5.08±0.03 (1.21±0.08)×105 2.37±0.03 99.57±0.04
PET/O纤维 5.41±0.05 (2.57±0.33)×105 2.04±0.05 99.09±0.19
PET/SiO2纤维 5.80±0.03 (6.27±0.44)×105 1.65±0.03

Tab.4

Antiviral properties to SARS-CoV-2 of PET/SiO2/O fiber"

纤维名称 病毒滴度的对数平均值
lgTCID50/(20 mL)
TCID50/(20 mL) 抗病毒活性值 抗病毒率/%
PET纤维 6.54 (3.49±0.21)×106
PET/SiO2/O纤维 4.37 (2.36±0.06)×104 2.17±0.01 99.32±0.06
[1] 宋登鹏, 周佳艳, 朱坤坤, 等. 纺织用抗菌整理剂的研究进展[J]. 西安工程大学学报, 2020, 34(2):26-36.
SONG Dengpeng, ZHOU Jiayan, ZHU Kunkun, et al. Research progress in antibacterial agents for textiles[J]. Journal of Xi'an Polytechnic University, 2020, 34(2):26-36.
[2] 王凤, 胡力主. 抗病毒纺织品现状及展望[J]. 纺织科技进展, 2020(7):5-7.
WANG Feng, HU Lizhu. Status and prospect of antiviral textiles[J]. Progress in Textile Science & Technology, 2020(7):5-7.
[3] ZHOU Jialiang, HU Zexu, ZABIHI Fatemeh, et al. Progress and perspective of antiviral protective mate-rial[J]. Advanced Fiber Materials, 2020(2):123-139.
[4] 吴均, 杨德莹, 李抒桐, 等. 甜橙精油的化学成分、抑菌和抗氧化活性研究[J]. 食品工业科技, 2016(14):148-153.
WU Jun, YANG Deying, LI Shutong, et al. Study on chemical components, antimicrobial and antioxidant activity of essential oil from Citrus sinensis[J]. Science and Technology of Food Industry, 2016(14):148-153.
[5] 赵鑫, 张宝月, 黄蓉, 等. 甜橙精油的挥发性成分分析及抗氧化和抑菌活性研究[J]. 应用化学, 2013, 42(3):575-577.
ZHAO Xin, ZHANG Baoyue, HUANG Rong, et al. Analysis of essential oil of Citrus sinensis and its antioxidative and antimicrobial effectiveness[J]. Chinese Journal of Applied Chemistry, 2013, 42(3):575-577.
[6] 杨宏亮, 田珩, 李沛波, 等. 柚皮苷及柚皮素的生物活性研究[J]. 中药材, 2007, 30(6):752-754.
YANG Hongliang, TIAN Heng, LI Peibo, et al. Study on the biological activity of naringin and naringenin[J]. Journal of Chinese Madicinal Materials, 2007, 30(6):752-754.
[7] TUTUNCHI H, NAEINI F, OSTADRAHIMI A, et al. Naringenin, a flavanone with antiviral and anti-inflammatory effects: a promising treatment strategy against COVID-19[J]. Phytotherapy Research, 2020, 73:1-11.
[8] JO S, KIM S, SHIN D H, et al. Inhibition of SARS-CoV 3CL protease by flavonoids[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35(1):145-151.
doi: 10.1080/14756366.2019.1690480
[9] CHENG L, ZHENG W, LI M, et al. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2[J]. Preprint, 2020(2):2020020313.
[10] ALI R, SHAHID A, ALI N, et al. Amelioration of Benzo[a]pyrene-induced oxidative stress and pulmonary toxicity by naringenin in wistar rats: a plausible role of COX-2 and NF-κB[J]. Human & Experimental Toxicology, 2017, 36(4):349-364.
[11] 杨频, 韩玲军, 张立伟. 超临界流体萃取技术在中草药有效成份提取中的应用[J]. 化学研究与应用, 2001, 13(2):128-132.
YANG Pin, HAN Lingjun, ZHANG Liwei. The principle of the technology of super critical fluid extraction and its application of extraction to effective components of Chinese herbal medicines[J]. Chemical Research and Application, 2001, 13(2):128-132.
[12] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359(6397):710-712.
doi: 10.1038/359710a0
[13] ALFREDSSON V, ANDERSON M W. Structure of MCM-48 revealed by transmission electron micro-scopy[J]. Chem Mater, 1996, 8(5):1141-1146.
doi: 10.1021/cm950568k
[14] KRUK M, JARONIEC M. Characterization of the porous structure of SBA-15[J]. Chem Mater, 2000, 12(7):1961-1968.
doi: 10.1021/cm000164e
[15] 王中平, 孙荣龙, 周龙, 等. 溶胶凝胶法室温合成介孔二氧化硅[J]. 材料导报, 2015(S1):62-65.
WANG Zhongping, SUN Ronglong, ZHOU Long, et al. Synjournal of mesoporous silicas by sol-gel method at room temperature[J]. Materials Reports, 2015(S1):62-65.
[16] 许磊, 王公慰, 魏迎旭, 等. MCM-41介孔分子筛合成研究: Ⅰ: 水热合成法[J]. 催化学报, 1999, 20(3):247-250.
XU Lei, WANG Gongwei, WEI Yingxu, et al. Study on synjournal of mesoporous molecular sieve MCM-41: Ⅰ: hydrothermal synjournal method[J]. Chinese Journal of Catalysis, 1999, 20(3):247-250.
[17] 张青山, 张辉森, 郭炳南. 以双子表面活性剂为模板全微波辐射合成介孔分子筛MCM-48[J]. 北京理工大学学报, 2003, 3:394-396.
ZHANG Qingshan, ZHANG Huisen, GUO Bingnan. Synjournal of mesoporous molecular sieve MCM-48 using surfactant gemini as a template and applying the microwave radiation method[J]. Transactions of Beijing Institute of Technology, 2003, 3:394-396.
[18] 林杰, 廖金华, 蔡基智. 超临界二氧化碳萃取柚皮甙的研究[J]. 中国食品添加剂, 2011, 1:72-76.
LIN Jie, LIAO Jinhua, CAI Jizhi. Extraction of naringin from shaddock by supercritical CO2[J]. China Food Additives, 2011, 1:72-76.
[19] 段红梅, 汪希铭, 黄子欣, 等. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(7):15-22.
DUAN Hongmei, WANG Ximing, HUANG Zixin, et al. Construction and drug release properties of fiber-based mesoporous SiO2 drug carrier[J]. Journal of Textile Research, 2020, 41(7):15-22.
[20] YU Senlong, XIANG Hengxue, ZHOU Jialiang, et al. Preparation and characterization of fire resistant PLA fibers with phosphorus flame retardant[J]. Fibers and Polymers, 2017, 18(6):1098-1105.
doi: 10.1007/s12221-017-6877-5
[21] YU Senlong, XIANG Hengxue, ZHOU Jialiang, et al. The synergistic effect of organic phosphorous/α-zirconium phosphate on flame-retardant poly(lactic acid) fiber[J]. Fibers and Polymers, 2018, 19:812-820.
doi: 10.1007/s12221-018-7828-5
[1] DONG Shuang , KONG Yuying , GUAN Jinping , CHENG Xianwei , CHEN Guoqiang. Chemical separation and recycling of waste polyester / cotton blended military training uniforms [J]. Journal of Textile Research, 2022, 43(01): 178-185.
[2] LI Longlong , WEI Peng , WU Cuixia , YAN Jinfei , LOU Hejuan , ZHANG Yifeng , XIA Yumin , WANG Yanping , WANG Yimin. Synthesis and properties of bio-based liquid crystal copolyester fiber based on p-hydroxyphenyl propionic acid [J]. Journal of Textile Research, 2022, 43(01): 9-14.
[3] LIU Xinhua, LIU Hailong, FANG Yinchun, YAN Peng, HOU Guangkai. Preparation and properties of flame retardant polyester/cotton blended fabrics by layer-by-layer assemblying polyethylenimine/phytic acid [J]. Journal of Textile Research, 2021, 42(11): 103-109.
[4] ZHU Lanfang, BAI Jie, ZHOU Yincheng, HOU Chengwei. Effect of ultrasonic treatment on 4,4'-diaminodiphenylmethane in polyurethane coating of polyester fabric [J]. Journal of Textile Research, 2021, 42(11): 124-128.
[5] PU Dandan, FU Yaqin. Preparation and sound insulation performance of polyester fabric/polyvinyl chloride-hollow glass microspheres composites [J]. Journal of Textile Research, 2021, 42(11): 77-83.
[6] WAN Suying, BAO Jianna, WANG Ying, ZHANG Xianming, CHEN Shichang, YANG Zhichao, SHI Jiaoxue, CHEN Wenxing. Melt polycondensation and kinetics of phosphorus containing flame retardant copolyesters [J]. Journal of Textile Research, 2021, 42(11): 9-16.
[7] QIU Zhicheng, LI Xin, LI Zhiyong, WANG Ying, JIN Jian, WU Shufang. Structure and properties of polyester/carbon black system prepared by in-situ continuous polymerization [J]. Journal of Textile Research, 2021, 42(10): 15-21.
[8] CHEN Ke, ZHANG Di, JI Yijun, LE Rongqing, SU Xuzhong. Effect of combed polyester top content on properties of polyester knitted fabrics [J]. Journal of Textile Research, 2021, 42(09): 66-69.
[9] ZHANG Fan, ZHANG Guobo, ZHAO Yuxin, ZHANG Ru, YANG Hai, WANG Shihao, WANG Nanfang. Application of catalytic oxidative soaping for polyester/cotton fabric dyeing in one bath [J]. Journal of Textile Research, 2021, 42(09): 97-103.
[10] LI Weibin, ZHANG Cheng, LIU Jun. Preparation of superhydrophobic coated cotton fabrics for oil-water separation [J]. Journal of Textile Research, 2021, 42(08): 109-114.
[11] LI Yanyan, LI Mengjuan, GE Mingqiao. Research progress on decolorization and recycling of colored polyester waste [J]. Journal of Textile Research, 2021, 42(08): 17-23.
[12] WANG Yaning, ZHOU Chufan, WU Jing, WANG Huaping. Progress in preparation and structure-property relationship of bio-based polyesters of isohexides [J]. Journal of Textile Research, 2021, 42(08): 8-16.
[13] XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24.
[14] GU Weiwen, WANG Wenqing, WEI Lifei, SUN Chenying, HAO Dan, WEI Jianfei, WANG Rui. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate) [J]. Journal of Textile Research, 2021, 42(07): 1-10.
[15] LI Fengyan, YE Tianyu, ZHAN Xiaoqing, ZHAO Jian, LI Danyang, WANG Rui. Preparation and properties of puncture-resistant fabrics made from polyester and aramid or ultrahigh molecular weight polyethylene compound yarns [J]. Journal of Textile Research, 2021, 42(07): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[8] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[9] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[10] GU Da-qiang;NIE Lin. Reinforcement fabric knitting machine for plastic pressure hose[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 86 -88 .