Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 139-145.doi: 10.13475/j.fzxb.20210202107

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation of nonwoven composites based on metal-organic frame compounds and removal of hexavalent chromium from wastewater

YU Fan, ZHENG Tao, TANG Tao, JIN Mengting, ZHU Hailin, YU Bin()   

  1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-02-05 Revised:2021-12-29 Online:2022-03-15 Published:2022-03-29
  • Contact: YU Bin E-mail:yubin7712@163.com

Abstract:

To solve the pollution of hexavalent chromium (Cr(VI)) in water, graft modification of Zirconium-based organic frame compound (UiO-66-NH2) by polyurethane (PU) was proposed. The modified PU/UiO-66-NH2 was then deposited onto polypropylene (PP) nonwovens to prepare PU/UiO-66-NH2/PP nonwoven composites, intended for Cr (Ⅵ) adsorption and visible light catalytic reduction. The effect of metal-organic frameworks(MOFs) content on the PU/UiO-66-NH2/PP nonwoven composites performance and the bonding fastness between PU/UiO-66-NH2 and PP fabrics were explored, and the performances of the composites for adsorption and photocatalytic reduction of Cr (Ⅵ) were analyzed. The results showed that PU/UiO-66-NH2 retains the original topology of UiO-66-NH2, and when the UiO-66-NH2 content was 20%, PU/UiO-66-NH2/PP nonwoven composites present good adsorption performance for Cr (Ⅵ). The PU/UiO-66-NH2/PP nonwoven composites have no obvious mass loss after different time ultrasonic washing, indicating good bonding fastness between PU/UiO-66-NH2 and PP fabrics. Under visible light, PU/UiO-66-NH2/PP nonwoven composites are both adsorbent and photocatalyst. Meanwhile, the composites show good performance after reutilization for 4 times.

Key words: hexavalent chromium, wastewater, metal-organic frameworks, nonwoven, adsorption, catalytic reduction

CLC Number: 

  • TS101.8

Fig.1

Standard curve of absorbance-concentration of K2Cr2O7 aqueous solution"

Fig.2

XRD patterns of UiO-66-NH2 and PU/UiO-66-NH2 with different MOFs contents"

Fig.3

SEM images of UiO-66-NH2 and PU/ UiO-66-NH2 with 10% MOFs, 20% MOFs and 30% MOFs"

Tab.1

Cr2 O 7 2 - adsorption properties of UiO-66-NH2 powder and PU/UiO-66-NH2/PP composites"

样品 MOFs质量
分数/%
PP非织造布
增加质量/mg
MOFs
质量/mg
饱和吸附量/
(mg·g-1)
UiO-66-NH2粉末 20.0 152.7
M1 10 159 15.9 97.9
M2 20 189 37.8 144.3
M3 30 209 62.7 125.6

Tab.2

Mass loss rates of UiO-66-NH2/PP and PU/UiO-66-NH2/PP composites under different ultrasonic washing time"

样品 不同水洗时间下的质量损失率/%
0 min 5 min 10 min 20 min 30 min
UiO-66-NH2/PP 0 32.2 71.0 81.4 89.8
PU/UiO-66-NH2/PP 0 1.4 2.7 4.5 4.5

Fig.4

Adsorption performance of Cr(Ⅵ) by M0 and M2 in different concentration K2Cr2O7 aqueous solution(pH=7)"

Fig.5

Light absorption performance of UiO-66-NH2 and PU/UiO-66-NH2/PP composites. (a) UV-visible diffuse reflectance spectroscopy; (b) Plot of (αhv)2 versus energy(hv)for bandgap energy of samples"

Fig.6

Photocatalytic reduction performance of Cr(Ⅵ) by M0 and M2 in K2Cr2O7 aqueous solution with different pH value"

Fig.7

XPS peak division of Cr 2p3/2"

Fig.8

Cycling runs of photocatalytic reduction of Cr(Ⅵ) over PU/UiO-66-NH2/PP composites"

[1] RENITTA J, PAMELA J, ANOOP K Y, et al. Biosorption and biotransformation of hexavalent chromium [Cr(Ⅵ)]: a comprehensive review[J]. Chemosphere, 2018,207:255-266.
doi: 10.1016/j.chemosphere.2018.05.050
[2] 吴建刚, 赵志南, 蔡瑜瑄, 等. 皮革加工业重金属铬污染监测分析[J]. 环境影响评价, 2015,37(1):64-66.
WU Jiangang, ZHAO Zhinan, CAI Yuxuan, et al. Analysis of chromium pollution for the leather processing industry[J]. Environmental Impact Assessment, 2015,37(1):64-66.
[3] WANG Chongchen, DU Xuedong, LI Jin, et al. Photocatalytic Cr(Ⅵ) reduction in metal-organic frameworks: a mini-review[J]. Applied Catalysis B: Environmental, 2016,193:198-216.
doi: 10.1016/j.apcatb.2016.04.030
[4] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019,31(7):980-995.
doi: 10.7536/PC181108
TAN Yuanming, MENG Hao, ZHANG Xia. Removal of organic dyes and heavy metal ions by functionalized MOFs and MOFs/polymer composite membranes[J]. Progress in Chemistry, 2019,31(7) : 980-995.
doi: 10.7536/PC181108
[5] TIAN Ying, HUANG Liping, ZHOU Xiaohui, et al. Electroreduction of hexavalent chromium using a polypyrrole-modified electrode under potentiostatic and potentiodynamic conditions[J]. Journal of Hazardous Materials, 2012,225:15-20.
[6] SANA J, SHAHNAZ K, SEYEDEHGOLSHAN H, et al. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(Ⅱ), Cd(Ⅱ) and Cr(Ⅵ) ions from aqueous solutions[J]. Journal of Hazardous Materials, 2019,368:10-20.
doi: 10.1016/j.jhazmat.2019.01.024
[7] GE Qiuyue, FENG Xuezhen, WANG Ranhao, et al. Mixed redox-couple-involved chalcopyrite phase CuFeS2 quantum dots for highly efficient Cr(Ⅵ) removal[J]. Environmental Science & Technology, 2020,54(13):8022-8031.
doi: 10.1021/acs.est.0c01018
[8] WANG Fuxue, YI Xiaohong, WANG Chongchen, et al. Photocatalytic Cr(Ⅵ) reduction and organic-pollutant degradation in a stable 2D coordination polymer[J]. Chinese Journal of Catalysis, 2017,38:2141-2149.
doi: 10.1016/S1872-2067(17)62947-4
[9] 王崇臣, 王恂. 金属-有机骨架在水处理中的应用研究进展[J]. 工业水处理, 2020,40(11):9-17.
WANG Chongchen, WANG Xun. The application of metal-organic frameworks in thewastewater treatment:a state-of-the-art review[J]. Industrial Water Treatment, 2020,40(11):9-17.
[10] HIROYASU F, MICHAEL O, KYLE E, et al. The chemistry and applications of metal-organic frame-works[J]. Science, 2013,341(6149):1230444.
doi: 10.1126/science.1230444
[11] 李庆, 樊增禄, 张洛红, 等. 锆-有机骨架对水中染料的高选择性可循环吸附[J]. 纺织学报, 2019,40(2):141-146.
LI Qing, FAN Zenglu, ZHANG Luohong, et al. Preferential and recyclable adsorption of dyes from water by Zr-organic skeleton[J]. Journal of Textile Research, 2019,40(2):141-146.
[12] WANG Hou, YUAN Xingzhong, WU Yan, et al. Facile synjournal of amino-functionalized titanium metal-organicframeworks and theirsuperior visible-light photocatalytic activity for Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2015,286:187-194.
doi: 10.1016/j.jhazmat.2014.11.039
[13] MA Xiaojie, CHAI Yuantao, LI Ping, et al. Metal-organic framework films and their potential applications in environmental pollution control[J]. Accounts of Chemical Research, 2019,52(5):1461-1470.
doi: 10.1021/acs.accounts.9b00113 pmid: 31074608
[14] 刘禹豪, 孙辉, 王捷琪, 等. TiO2/MIL-88B(Fe)/聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020,41(2):95-102.
LIU Yuhao, SUN Hui, WANG Jieqi, et al. Preparation of TiO2/MIL-88B(Fe)/polypropylene composite melt-blown nonwovens and study on dye degradation properties[J]. Journal of Textile Research, 2020,41(2):95-102.
[15] ZHANG Kun, HUO Qian, ZHOU Yingying, et al. Textiles/metal organic frameworks composites as flexible air filters for efficient particulate matter removal[J]. ACS Applied Materials & Interfaces, 2019,11(19):17368-17374.
[16] ZHANG Yuanyuan, FENG Xiao, LI Haiwei, et al. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane[J]. Angewandte Chemie, 2015,54(14):4259-4263.
[17] YUAN Yupeng, YIN Lisha, GAO Shaowen, et al. Improving photocatalytic hydrogen production of metal-organic framework UiO-66 octahedrons by dye-sensitization[J]. Applied Catalysis B: Environmental, 2015,168:572-576.
[18] MARK C B, BRAD P P, ANDREW P G, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011,257(7):2717-2730.
doi: 10.1016/j.apsusc.2010.10.051
[1] WANG Chenmeizi, WANG Ling, ZHANG Qingle, WANG Ying, XIA Xin. Preparation and property of composite hydrogel nonwoven based fresh-keeping material [J]. Journal of Textile Research, 2022, 43(03): 132-138.
[2] CHENG Yue, HU Yingjie, FU Yijun, LI Dawei, ZHANG Wei. Preparation and properties of antibacterial hemostatic nonwoven elastic bandage [J]. Journal of Textile Research, 2022, 43(03): 31-37.
[3] DENG Yang, SHI Xianbing, WANG Tao, LIU Liwei, HAN Zhenbang. Preparation and performance of modified polyacrylonitrile fibers photocatalyst with MIL-53(Fe) [J]. Journal of Textile Research, 2022, 43(03): 58-63.
[4] TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70.
[5] WEI Na'na, LIU Die, MA Zheng, JIAO Chenlu. Adsorption performance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method [J]. Journal of Textile Research, 2022, 43(02): 53-60.
[6] ZHANG Mengdi, ZHANG Wei, YAO Jiming. Application of natural clay minerals in electrocoagulation of indigo dyeing wastewater [J]. Journal of Textile Research, 2022, 43(02): 196-201.
[7] ZHAO Jiaming, SUN Hui, YU Bin, YANG Xiaodong. Preparation of CuO/polypropylene/ethylene-octene copolymer composite melt-blown nonwovens and their oil absorption properties [J]. Journal of Textile Research, 2022, 43(02): 89-97.
[8] DUO Yongchao, QIAN Xiaoming, GUO Xun, GAO Longfei, BAI He, ZHAO Baobao. Preparation and properties of hollow pie-segmented high shrinkage polyester/polyamide 6 microfiber nonwovens [J]. Journal of Textile Research, 2022, 43(02): 98-104.
[9] DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emission [J]. Journal of Textile Research, 2022, 43(01): 36-42.
[10] SUN Ting, ZHANG Ruquan, TANG Zijie, TU Hu, HU Min. Study on low-carbon and energy-saving cold pad-batch bleaching treatment of cotton spunlaced nonwoven [J]. Journal of Textile Research, 2022, 43(01): 89-95.
[11] PEI Liujun, SHI Wenhua, ZHANG Hongjuan, LIU Jinqiang, WANG Jiping. Technology progress and application prospect of non-aqueous medium dyeing systems [J]. Journal of Textile Research, 2022, 43(01): 122-130.
[12] ZHU Feichao, ZHANG Yujing, ZHANG Qiang, YE Xiangyu, ZHANG Heng, WANG Lunhe, HUANG Ruijie, LIU Guojin, YU Bin. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens [J]. Journal of Textile Research, 2022, 43(01): 49-57.
[13] SHI Minhui, LI Bingrui, WANG Ting, WU Liguang. Mechanism and performance of TiO2 composite photocatalysts for photo-degradation of methyl-orange in highly saline wastewater [J]. Journal of Textile Research, 2021, 42(12): 103-110.
[14] LI Qing, CHEN Linghui, LI Dan, WU Zhiqiang, ZHU Wei, FAN Zenglu. Research progress in photocatalytic degradation of dyes using metal-organic frameworks [J]. Journal of Textile Research, 2021, 42(12): 188-195.
[15] SHEN Chensi, WANG Man, XU Chenye, WANG Huaping, LI Fang. Radical-induced crosslinking of poly(vinyl alcohol) from desizing wastewater [J]. Journal of Textile Research, 2021, 42(11): 117-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!