Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 168-175.doi: 10.13475/j.fzxb.20210203109

• Machinery & Accessories • Previous Articles     Next Articles

Effect of yarn's initial position on yarn tucked-in in pneumatic tucked-in selvedge apparatus

LIU Yisheng1(), ZHOU Xinlei1, LIU Dandan2,3   

  1. 1. School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
    3. Academia Sinica, United Science & Technology Co., Ltd., Hangzhou, Zhejiang 310051, China
  • Received:2021-02-15 Revised:2021-06-22 Online:2022-03-15 Published:2022-03-29

Abstract:

In order to improve the structural design of the pneumatic tucked-in selvedge apparatus and increase the yarn tucked-in efficiency and stability, a combination of numerical simulation and experiment is used to explore the mechanism of the yarn's initial position on the yarn tucked-in. Based on the one-way weak fluid-structure interaction algorithm, a numerical model suitable for simulating the behavior of a yarn from oblique-blowing to tucked-in is proposed and the movement of a single yarn with one end fixed and the other free end in different initial positions being subjected to oblique-blowing and tucked-in sequence is explored. A visual experimental bench was built to record the movement of the yarn through a high-speed camera. By comparing the results of numerical simulation with experimental data, the accuracy of the one-way weak fluid-structure interaction algorithm is verified. The results show that: the time and the elongation of the yarn tucked-in are related to its initial position, and the tucked-in effect of the yarn is related to its initial ordinate. The yarns in different initial positions can all tucked-in within 7.425 ms.

Key words: pneumatic tucked-in selvedge apparatus, oblique-blowing, yarn tucked-in, folding-in airflow, fluid-structure interaction, numerical simulation

CLC Number: 

  • TS183.92

Fig.1

Tucked-in and oblique-blowing three-dimensional airflow field fluid model"

Fig.2

Working principle diagram of visual experiment bench"

Fig.3

Schematic diagram of ducts"

Fig.4

Contours of velocity and pressure of flow field. (a) Oblique-blowing airflow field; (b) Folding-in airflow field"

Fig.5

Diagram of velocity and pressure for displacement. (a) Oblique-blowing airflow field; (b) Folding-in airflow field"

Fig.6

Oblique-blowing movement state of yarn at different time steps in airflow field. (a) Group A; (b) Group B; (c) Group C; (d) Group D; (e) Group E"

Tab.1

Elongation of yarn and aerodynamic force of beam element node whose X coordinate is 0.012 5 m at different time steps"

组别 时间/ms 伸长量/mm 气动力/kN
A 0 0 3.57
1 0.171 3.37
2 0.375 1.44
2.725 0.696
B 0 0 3.57
1 0.107 3.23
2 0.270 3.20
3 0.462 2.60
3.5 0.762
C 0 0 3.57
1 0.014 3.52
2 0.041 3.46
3 0.087 3.41
4 0.191 3.35
5 0.364 3.17
5.925 0.752
D 0 0 3.76
1 0.103 3.30
2 0.264 3.28
3 0.452 2.62
3.562 5 0.760
E 0 0 3.52
1 0.109 3.14
2 0.274 3.10
3 0.468 2.53
3.475 0.764

Fig.7

Tucked-in movement state of yarn at different time steps in airflow field. (a) Group A; (b) Group B; (c) Group C; (d) Group D; (e) Group E"

Tab.2

Elongation of yarn and aerodynamic force of beam element node whose Y coordinate is 0.013 95 m at different time steps"

组别 时间/ms 伸长量/mm 气动力/kN
A 0 0 1.67
0.5 0.201 1.60
1 0.493 1.92
1.5 1.037
1.525 1.068
B 0 0 1.64
0.5 0.158 1.64
1 0.366 1.61
1.5 0.834
1.562 5 0.905
C 0 0 1.49
0.5 0.154 1.05
1 0.361 1.24
1.5 0.754
D 0 0 1.61
0.5 0.230 0.79
1 0.419
1.225 0.521
E 0 0 1.64
0.5 0.153 1.65
1 0.361 1.69
1.5 0.722 2.25
1.887 5 1.132

Fig.8

Tucked-in trajectory of yarn in experiment. (a) Group A; (b) Group B; (c) Group C; (d) Group D; (e) Group E"

Tab.3

Total elongation of yarn"

组别 数值模拟
总时间/ms
数值模拟总
伸长量/mm
实验总伸
长量/mm
数值模拟
总伸长比/%
实验总
伸长比/%
A 4.25 1.764 1.86 17.64 18.6
B 5.062 5 1.665 1.77 16.65 17.7
C 7.425 1.506 1.62 15.06 16.2
D 4.787 5 1.281 1.38 12.81 13.8
E 5.362 5 1.896 2.00 18.96 20.0

Fig.9

Motion trajectory diagram of numerical simulation and experimental results of three nodes. (a) Group A; (b) Group B; (c) Group C; (d) Group D; (e) Group E"

[1] 秦贞俊. 从历届ITMA看无梭织机的发展[J]. 纺织导报, 2004(3):3-15,108.
QIN Zhenjun. An observation on the development of shuttle-less looms by reviewing previous sessions of ITMA[J]. China Textile Leader, 2004(3):3-15,108.
[2] 梅自强. 国内外织造技术的现状和展望[J]. 南通纺织职业技术学院学报, 2004,4(1):1-5.
MEI Ziqiang. The current situation and prospect of weave technology both at home and abroad[J]. Journal of Nantong Textile Vocational Technology College, 2004,4(1):1-5.
[3] 夏旭文, 张萍, 周新科, 等. 新型织机毛边的经济性分析[J]. 辽宁丝绸, 2017, 4(3): 21, 31.
XIA Xuwen, ZHANG Ping, ZHOU Xinke, et al. Economic analysis of new loom's burrs[J]. Liaoning Tussah Silk, 2017, 4(3): 21, 31.
[4] 刘宜胜, 裘燚斌, 吴震宇. 气动折入装置异向射流场中纱线的运动规律[J]. 纺织学报, 2018,39(7):122-129.
LIU Yisheng, QIU Yibin, WU Zhenyu. Movement rule of yarn in incongruous jet flow with pure pneumatic tucker[J]. Journal of Textile Research, 2018,39(7):122-129.
[5] 李小明, 周香琴, 周巧燕. 折入边装置钩针驱动机构的分析与优化[J]. 浙江理工大学学报(自然科学版), 2015,33(5):356-359.
LI Xiaoming, ZHOU Xiangqin, ZHOU Qiaoyan. Analysis and optimization of crochet hook driving mechanism in tuck-in selvedge device[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2015,33(5):356-359.
[6] 宋日升, 马庆峰, 仲伟松, 等. 一种气动折入边装置: 201620397607.2[P]. 2016-09-07.
SONG Risheng, MA Qingfeng, ZHONG Weisong, et al. A pneumatic tucked-in device: 201620397607.2[P]. 2016-09-07.
[7] GUO Huifen, CHEN Zhiyong, YU Chongwen. Numerical study of an air-jet spinning nozzle with a slotting-tube[J]. Journal of Physics: Conference Series, 2008,96:1-5.
[8] SHIH T H, LIOU W W, SHABBIR A, et al. A new κ-ε eddy viscosity model for high reynolds number turbulent flows[J]. Computers Fluids, 1995,24(3):227-238.
doi: 10.1016/0045-7930(94)00032-T
[9] HASSANA A H A, ROLA S A, AHMED H H, et al. Numerical and experimental study of the influence of nozzle flow parameters on yarn production by jet-ring spinning[J]. Alexandria Engineering Journal, 2018(57):2975-2989.
[10] JONATHAN M Kaldor, DOUG L James, STEVE Marschner. Simulating knitted cloth at the yarn level[J]. ACM Trans, 2008,27(3):1-9.
[11] OSMAN A, DELCOUR L, HERTENS I, et al. Numerical and experimental study on the joint forming mechanism in the pneumatic splicing process[J]. Textile Research Journal, 2019,89(21/22):4512-4525.
doi: 10.1177/0040517519837731
[12] 刘宜胜, 徐光逸. 斜吹气流入射角对纱线折入的影响[J]. 纺织学报, 2020,41(7):72-77.
LIU Yisheng, XU Guangyi. Effect of incident angle of airflow on weft yarn tucking in shuttleless weaving[J]. Journal of Textile Research, 2020,41(7):72-77.
[1] QIAN Miao, HU Hengdie, XIANG Zhong, MA Chengzhang, HU Xudong. Flow and heat transfer characteristics of non-uniform heat-pipe heat exchanger [J]. Journal of Textile Research, 2021, 42(12): 151-158.
[2] ZHOU Haobang, SHEN Min, YU Lianqing, XIAO Shichao. Effect of structural parameter of relay nozzles on characteristics of flow field in profiled reed of air jet loom [J]. Journal of Textile Research, 2021, 42(11): 166-172.
[3] MOU Haolei, XIE Jiang, PEI Hui, FENG Zhenyu, GENG Hongzhang. Ballistic impact tests and numerical simulation of aramid fabric and containment ring [J]. Journal of Textile Research, 2021, 42(11): 56-63.
[4] ZHANG Siyu, YU Li, JIA He, LIU Xin. Free form deformation modeling method and inflation mechanism of folded canopy fabrics [J]. Journal of Textile Research, 2021, 42(07): 108-114.
[5] SHI Qianqian, WANG Jiang, ZHANG Yuze, LIN Huiting, WANG Jun. Numerical analysis on formation mechanism of airflow field in rotor spinning unit [J]. Journal of Textile Research, 2021, 42(02): 180-184.
[6] CHU Xi, QIU Hua. Flow simulations of ring swirl nozzle under different inlet pressure conditions [J]. Journal of Textile Research, 2020, 41(09): 33-38.
[7] LIU Yisheng, XU Guangyi. Effect of incident angle of oblique airflow on weft yarn tucking [J]. Journal of Textile Research, 2020, 41(07): 72-77.
[8] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[9] LI Sihu, SHEN Min, BAI Cong, CHEN Liang. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field [J]. Journal of Textile Research, 2019, 40(11): 161-167.
[10] CHEN Xu, WU Bingyang, FAN Ying, YANG Musheng. Numerical simulation of low temperature protection process for heat storage fabrics [J]. Journal of Textile Research, 2019, 40(07): 163-168.
[11] ZHENG Zhenrong, ZHI Wei, HAN Chenchen, ZHAO Xiaoming, PEI Xiaoyuan. Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux [J]. Journal of Textile Research, 2019, 40(06): 38-43.
[12] CAO Haijian, CHEN Hongxia, HUANG Xiaomei. Numerical simulation of side compressive properties on glass fiber/epoxy resin sandwich composite [J]. Journal of Textile Research, 2019, 40(05): 59-63.
[13] GUO Zhen, LI Xinrong, BU Zhaoning, YUAN Longchao. Three-dimensional numerical simulation of fiber movement in nozzle of murata vortex spinning [J]. Journal of Textile Research, 2019, 40(05): 131-135.
[14] GUANG Shaobo, JIN Yuzhen, ZHU Xiaochen. Analysis on airflow field in extended nozzle of air jet loom [J]. Journal of Textile Research, 2019, 40(04): 135-139.
[15] LIU Qiannan, ZHANG Han, LIU Xinjin, SU Xuzhong. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!