Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 132-138.doi: 10.13475/j.fzxb.20210203207

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation and property of composite hydrogel nonwoven based fresh-keeping material

WANG Chenmeizi1,2, WANG Ling1, ZHANG Qingle1, WANG Ying1, XIA Xin1,2()   

  1. 1. College of Textile and Clothing, Xinjiang University, Urumqi, Xinjiang 830046, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2021-02-15 Revised:2021-09-29 Online:2022-03-15 Published:2022-03-29
  • Contact: XIA Xin E-mail:xjxiaxin@163.com

Abstract:

In order to expand the application of nonwovens as fresh-keeping packaging materials, using sea buckthorn as the raw material for antioxidant fresh-keeping ingredients, a composite hydrogel nonwovens fresh-keeping material was prepared by loading different volume fractions of sea buckthorn extract (SBT) to prepare apocynum nanofibers/chitosan based hydrogels and compounding with polyester nonwovens. The blocking effect, release behavior, antioxidant properties, antibacterial and fresh-keeping performance of the engineered material were analyzed. The results show that as SBT volume fraction increases, the blocking effect of the composite hydrogel nonwoven is enhanced and the oxidation resistance is significantly improved. In the 18 d release test, the maximum cumulative SBT release percentage from the fresh-keeping material under the acidic condition reaches 67.84%, and the width of the inhibition zone against Staphylococcus aureus and Escherichia coli is more than 1 mm, indicating good antibacterial performance. The composite hydrogel nonwoven with 30% SBT has the best comprehensive freshness preservation ability for 9 d.

Key words: chitosan-based hydrogel, sea buckthorn extract, barrier property, releasing behavior, nonwoven, fresh-keeping material

CLC Number: 

  • TS176

Fig.1

Morphologies of PET nonwovens and composite hydrogel nonwovens under 3-D microscope(×5 000)"

Tab.1

Air permeability of PET nonwovens and composite hydrogel nonwovensmm/s"

PET SHP0 SHP1 SHP2 SHP3
2 534.34 1 248.09 638.37 339.01 222.08

Fig.2

Release behavior of composite hydrogel nonwovens"

Tab.2

Antioxidant properties of composite hydrogel nonwovens%"

样品名称 DPPH清除率 OH-清除率 ABTS+清除率
SHP0 10.86 23.33 31.13
SHP1 69.34 79.63 56.20
SHP2 73.67 82.89 66.10
SHP3 88.58 84.69 69.40

Tab.3

Sensory evaluation of fresh-cut apples packaged with PET nonwovens and composite hydrogel nonwovens"

储存时间/d PET SHP0 SHP1 SHP2 SHP3
0 紧实饱满,无渗液 紧实饱满,无渗液 紧实饱满,无渗液 紧实饱满,无渗液 紧实饱满,无渗液
3 褐变,渗液析出 正常 正常 正常 正常
6 褐变严重,体积缩小 褐变,渗液 正常 正常 正常
9 霉变 褐变,变软,渗液 变软,渗液 变软,渗液 变软
12 霉变 褐变,变软,渗液 褐变,变软,渗液 褐变,渗液
15 霉变 霉变 褐变,变软,渗液

Fig.3

Titratable acid of fresh-cut apples packaged in composite hydrogel nonwovens"

Fig.4

Mass loss rate of fresh-cut apples packaged with composite hydrogel nonwovens"

Tab.4

Antibacterial properties of composite hydrogel nonwovensmm"

样品名称 抑菌带宽度
对大肠杆菌 对金黄色葡萄球菌
SHP0 3.77 1.71
SHP1 5.08 1.92
SHP2 6.52 4.85
SHP3 5.93 4.04
[1] 张翠环, 姚军, 郑贺云, 等. 不同包装材料对西州密25号哈密瓜贮藏保鲜的影响[J]. 农产品加工, 2020(12):14-16.
ZHANG Cuihuan, YAO Jun, ZHENG Heyun, et al. Effects of different packaging materials on fresh-keeping of xizhoumi 25(Cucumis melo var. saccharinus)[J]. Farm Products Processing, 2020(12):14-16.
[2] ZHANG S, WEI F, HAN X. An edible film of sodium alginate/pullulan incorporated with capsaicin[J]. New Journal of Chemistry, 2018,42(21):17756-17761.
doi: 10.1039/C8NJ04249G
[3] PRODYUT Dhar, UMESH Bhardwaj, AMIT Kumar, et al. Cellulose nanocrystals: a potential nanofiller for food packaging applications[M]. Washington: American Chemical Society, 2014:197-239.
[4] NARASAGOUDR S S, HEGDE V G, CHOUGALE R B, et al. Physico-chemical and functional properties of rutin induced chitosan/poly (vinyl alcohol) bioactive films for food packaging applications[J]. Food Hydrocolloids, 2020,109:106096.
doi: 10.1016/j.foodhyd.2020.106096
[5] 唐文彦, 王艳颖, 胡文忠, 等. 壳聚糖复合涂膜对鲜切富士苹果营养品质的影响[J]. 现代园艺, 2016(1):6-8.
TANG Wenyan, WANG Yanying, HU Wenzhong, et al. Effects of chitosan composite coating on nutritional quality of fresh-cut Fuji apple.[J]. Xiandai Horticulture, 2016(1):6-8.
[6] WANG L, WANG C, ZHANG Q, et al. Comparison of morphological, structural and antibacterial properties of different apocynum venetum poly (lactic acid)/nanocellulose nanofiber films[J]. Textile Research Journal, 2020,90(5/6):593-605.
doi: 10.1177/0040517519873868
[7] WANG C, ZHOU H, WANG L, et al. Preparation and characterization of apoacynum venetum cellulose nanofibers reinforced chitosan-based composite hydro-gels[J]. Colloids and Surfaces B: Biointerfaces, 2020,11:111441.
[8] 杜津, 何悦, 刘敏, 等. 柚子精油微胶囊的制备及其对鲜切苹果的保鲜效果研究[J/OL]. 食品与发酵工, 2021,47(14):1-11[2021-02-09]. https://doi.org/10.13995/j.cnki.11-1802/ts.025999.
DU Jin, HE Yue, LIU Min, et al. Preparation of pomelo essential oil microcapsule and its preservation effect on fresh-cut apples[J/OL]. Food and Fermentation Industries, 2021,47(14):1-11[2021-02-09]. https://doi.org/10.13995/j.cnki.11-1802/ts.025999.
[9] 宫晨芳. 植物缩合单宁活性及对苹果保鲜的机理研究[D]. 厦门:厦门大学, 2018:27-31.
GONG Chenfang. The research on bioactivities of vegetables condensed tannins and preserve on fresh-cut apple[D]. Xiamen:Xiamen University, 2018:27-31.
[10] 王荣, 罗倩, 冯怡. DPPH、ABTS和FRAP微量法测定山奈酚的抗氧化能力[J]. 广州化工, 2021,49(3):58-59,63.
WANG Rong, LUO Qian, FENG Yi. Determination of antioxidant effects of kaempferol by micro-model of DPPH, ABTS and FRAP Assay[J]. Guangzhou Chemical Industry, 2021,49(3):58-59,63.
[11] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000:267-270.
LI Hesheng. Experimental principle and techniques of plant physiology and biochemistry[M]. Beijing: Higher Education Press, 2000:267-270.
[12] HERNANDEZ-MUNOZ P, ALMENAR E, VALLE V D, et al. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (fragaria X anassa) quality during refrigerated storage[J]. Food Chemistry, 2008,110(2):428-435.
doi: 10.1016/j.foodchem.2008.02.020
[13] 周亚男. 壳聚糖/茶多酚涂覆非织造布制备活性包装材料的研究[D]. 杭州:浙江理工大学, 2018:31-42.
ZHOU Yanan. Preparation and properties of chitosan/ tea polyphenol coated non-woven fabric as active packaging material[D]. Hangzhou: Zhejiang Sci-Tech University, 2018:31-42.
[14] 周园园, 舒祖菊, 马楠, 等. 壳聚糖浓度对改性非织造布草莓包装保鲜效果的影响[J]. 包装学报, 2016,8(2):28-33.
ZHOU Yuanyuan, SHU Zuju, MA Nan, et al. Effects of chitosan concentration on preservation of strawberry in modified non-woven packages[J]. Packaging Journal, 2016,8(2):28-33.
[15] DELMAR K, BIANCOPELED H. The dramatic effect of small pH changes on the properties of chitosan hydrogels crosslinked with genipin[J]. Carbohydrate Polymers, 2015,127:28-37.
doi: 10.1016/j.carbpol.2015.03.039
[16] YANG Jun, FENG Xu. Synergistic reinforcing mechanisms in cellulose nanofibrils composite hydrogels: interfacial dynamics, energy dissipation, and damage resistance[J]. Biomacromolecules, 2017,18(8):2623-2632.
doi: 10.1021/acs.biomac.7b00730
[17] 赵盼, 王丽, 孟祥红. 壳聚糖及其衍生物的抗氧化性能及应用研究进展[J]. 食品科学, 2010,31(15):299-303.
ZHAO Pan, WANG Li, MENG Xianghong. Research progress on antioxidant properties and application of chitosan and its derivatives[J]. Food Science, 2010,31(15):299-303.
[18] 陈凯丽. 低聚原花青素对苹果采后腐烂病的防治效果和机制研究[D]. 沈阳:辽宁大学, 2020:23-30.
CHEN Kaili. Study on the control effect and mechanism of oligomer proanthocyanidins on postharvest apple rot[D]. Shenyang:Liaoning University, 2020:23-30.
[19] MANEESH A, CHAKRABORTY K, MAKKAR F. Pharmacological activities of brown seaweed sargassum wightii (family sargassaceae) using different in vitro models[J]. International Journal of Food Properties, 2016,20(4):931-945.
doi: 10.1080/10942912.2016.1189434
[20] MORADI M, TAJIK H, ROHANI S, et al. Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract[J]. Food Science and Technology, 2012,46(2):477-484.
[21] 董晓敏. 葡萄籽原花青素的提取、抑菌活性及其对鸡肉保鲜研究[D]. 济南:齐鲁工业大学, 2015:51-57.
DONG Xiaomin. Extraction, anti-bactrial mechanism and fresh-keeping effect of procyanidins from grape seed[D]. Ji'nan: Qilu University of Technology, 2015:51-57.
[1] YU Fan, ZHENG Tao, TANG Tao, JIN Mengting, ZHU Hailin, YU Bin. Preparation of nonwoven composites based on metal-organic frame compounds and removal of hexavalent chromium from wastewater [J]. Journal of Textile Research, 2022, 43(03): 139-145.
[2] CHENG Yue, HU Yingjie, FU Yijun, LI Dawei, ZHANG Wei. Preparation and properties of antibacterial hemostatic nonwoven elastic bandage [J]. Journal of Textile Research, 2022, 43(03): 31-37.
[3] ZHAO Jiaming, SUN Hui, YU Bin, YANG Xiaodong. Preparation of CuO/polypropylene/ethylene-octene copolymer composite melt-blown nonwovens and their oil absorption properties [J]. Journal of Textile Research, 2022, 43(02): 89-97.
[4] DUO Yongchao, QIAN Xiaoming, GUO Xun, GAO Longfei, BAI He, ZHAO Baobao. Preparation and properties of hollow pie-segmented high shrinkage polyester/polyamide 6 microfiber nonwovens [J]. Journal of Textile Research, 2022, 43(02): 98-104.
[5] DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emission [J]. Journal of Textile Research, 2022, 43(01): 36-42.
[6] SUN Ting, ZHANG Ruquan, TANG Zijie, TU Hu, HU Min. Study on low-carbon and energy-saving cold pad-batch bleaching treatment of cotton spunlaced nonwoven [J]. Journal of Textile Research, 2022, 43(01): 89-95.
[7] ZHU Feichao, ZHANG Yujing, ZHANG Qiang, YE Xiangyu, ZHANG Heng, WANG Lunhe, HUANG Ruijie, LIU Guojin, YU Bin. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens [J]. Journal of Textile Research, 2022, 43(01): 49-57.
[8] LIU Yang, XIA Zhaopeng, WANG Liang, FAN Jie, ZENG Qiang, LIU Yong. Development status and trend of antivirus medical protective clothing [J]. Journal of Textile Research, 2021, 42(09): 195-202.
[9] GAO Meng, WANG Zengyuan, LOU Qiwei, CHEN Gangjin. Characteristics of charge capture of melt-blown polypropylene electret nonwovens by corona charging [J]. Journal of Textile Research, 2021, 42(09): 52-58.
[10] DAI Shenhua, WENG Liang, LI Bingyan, ZHANG Jianping, YANG Xuhong. Preparation and properties of nano-ZnO loaded polyurethane/polyester foamed composite sponge [J]. Journal of Textile Research, 2021, 42(08): 96-101.
[11] WANG Yudong, JI Changchun, WANG Xinhou, GAO Xiaoping. Design and numerical analysis of new types of melt blowing slot-dies [J]. Journal of Textile Research, 2021, 42(07): 95-100.
[12] ZHANG Xuefei, LI Tingting, SHIU Bingchiuan, LIN Jiahorng, LOU Chingwen. Preparation of multifunctional core-shell structure thermoelectric fabrics by low-temperature interfacial polymerization [J]. Journal of Textile Research, 2021, 42(02): 174-179.
[13] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[14] SUN Huanwei, ZHANG Heng, ZHEN Qi, ZHU Feichao, QIAN Xiaoming, CUI Jingqiang, ZHANG Yifeng. Filtrations of propylene-based micro-nano elastic filters via melt blowing process [J]. Journal of Textile Research, 2020, 41(10): 20-28.
[15] TANG Feng, YU Houyong, ZHOU Ying, LI Yingzhan, YAO Juming, WANG Chuang, JIN Wanhui. Preparation and property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite films [J]. Journal of Textile Research, 2020, 41(09): 8-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!