Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 97-103.doi: 10.13475/j.fzxb.20210205407

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation and properties of photografted flame-retardant cotton fabrics with modified adenine nucleotide

LI Na1, WANG Xiao1(), LI Zhenbao1, LI Qian2, DU Bing1   

  1. 1. College of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
    2. College of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2021-02-23 Revised:2022-04-13 Online:2022-07-15 Published:2022-07-29
  • Contact: WANG Xiao E-mail:wangxiao@dlpu.edu.cn

Abstract:

In order to improve the durability of ribonucleic acid (RNA) unit applied to flame-retardant cotton fabrics and to reduce the cost of biological flame retardant treatment, a RNA unit derivative, 5'-adenine nucleotide (AMP), was modified with allyl bromide to prepare biological flame retardant monomer. The AMP monomer and AMP monomer/acrylamide were grafted on pristine cotton fabrics via photografting to prepare flame retardant cotton fabrics with AMP monomer and AMP monomer/acrylamide, respectively. The chemical structure of flame retardant monomer was characterized; the flame retardant properties of pristine cotton fabrics and flame retardant cotton fabrics were measured. The research results show that unsaturated double bonds were successfully introduced into AMP monomer. The decomposition temperature of the two photografted flame-retardant cotton fabrics was lower than that of pristine cotton fabric, and the weight loss of flame-retardant cotton fabrics was reduced. The after-flame time and after-glow time of flame-retardant cotton fabric photografted with AMP monomer/acrylamide were both decreased to 0 s. There is a certain synergistic flame retardant effect between AMP monomer and acrylamide leading to a lower cost.

Key words: adenine nucleotide, acrylamide, photografting, cotton fabric, flame retardancy

CLC Number: 

  • TS195.5

Fig.1

FT-IR spectra of AMP and AMP monomer"

Fig.2

Mass spectra of AMP monomer"

Fig.3

Three substituted reactions of AMP monomers. (a) Monosubstituted reaction; (b) Disubstituted reaction; (c) Trisubstituted reaction"

Tab.1

Effect of illumination time on flame retardant properties"

光照时间/min 质量增加率/% 续燃时间/s 阴燃时间/s
4 3.2 2.2 0
5 3.6 1.2 0
6 3.3 2.1 0
7 3.1 2.8 0

Tab.2

Effect of photoinitiator dosage on flame retardant properties"

TPO质量分数/% 质量增加率/% 续燃时间/s 阴燃时间/s
3 2.9 4.9 0
4 3.0 4.7 0
5 3.6 1.2 0
6 3.2 2.1 0
7 3.1 2.3 0

Fig.4

Surface morphology of cotton fabrics(×2 000). (a) Pristine cotton fabric; (b) Photografted flame retardant cotton fabric with AMP monomer; (c) Photografted flame retardant cotton fabric with AMP monomer/acrylamide"

Fig.5

EDX spectra of photografted flame retardant cotton fabrics with AMP monomer. (a) Photografted flame retardant cotton fabric with AMP monomer; (b) C element; (c)O element; (d) P element; (e) Na element;(f) N element"

Fig.6

TGA curves of cotton fabrics"

Tab.3

TGA data analysis of cotton fabrics"

样品 质量损失率10%
时的分解温度/℃
最大分解
温度/℃
质量损
失率/%
纯棉原织物 259.2 333.4 98.5
光接枝AMP单体阻燃棉织物 235.6 296.8 80.6
光接枝AMP单体/丙烯酰胺阻燃棉织物 207.7 298.7 84.0

Fig.7

SEM images of carbon residual of cotton fabrics after burning(×2 000). (a) Carbon residual of pristine cotton fabric; (b) Carbon residual of photografted flame retardant cotton fabric with AMP monomer; (c) Carbon residual of photografted flame retardant cotton fabric with AMP monomer/acrylamide"

Fig.8

Raman spectra of carbon residue of cotton fabrics after burning"

Tab.4

Comparison of flame retardant properties of photografted flame retardant cotton fabrics"

样品 洗涤
时间/min
质量增
加率/%
续燃
时间/s
阴燃
时间/s
纯棉原织物 4.8 41.2
光接枝AMP单体/
丙烯酰胺阻燃棉织物
8.3 0 0
光接枝AMP单体
阻燃棉织物
3.6 1.2 0
10 3.1 2.6 0
20 2.7 3.5 0
30 2.5 3.9 0.3
40 2.4 4.0 0.5

Fig.9

Carbon residue of cotton fabrics after vertical burning. (a) Pristine cotton fabric; (b) Photografted flame retardant cotton fabric with AMP monomer; (c) Photografted flame retardant cotton fabric with AMP monomer/acrylamide"

[1] 唐若谷, 黄兆阁, 卤系阻燃剂的研究进展[J]. 科技通报, 2012, 28(1): 129-132.
TANG Ruogu, HUANG Zhaoge. Research progress of halogen series flame retardants[J]. Bulletin of Science and Technology, 2012, 28(1): 129-132.
[2] 王丽焕, 钱晓明. 新型有机磷氮系阻燃剂的制备及其棉织物阻燃整理研究[J]. 精细石油化工, 2019, 36(2): 45-48.
WANG Lihuan, QIAN Xiaoming. Preparation of a new type of organic phosphorus-nitrogen flame retardant and study on the flame retardant finishing of cotton fabrics[J]. Fine Petrochemicals, 2019, 36(2): 45-48.
[3] 李娜娜, 姜国伟, 周光远, 等. 有机磷类阻燃剂的合成及应用进展[J]. 应用化学, 2016, 33(6): 611-623.
doi: 10.11944/j.issn.1000-0518.2016.06.150299
LI Nana, JIANG Guowei, ZHOU Guangyuan, et al. Progress in synthesis and application of organophosphorus flame retardants[J]. Applied Chemistry, 2016, 33(6): 611-623.
[4] 阮建成, 赵军. 新型环保阻燃剂的研究与进展[J]. 化工管理, 2015(5): 226.
RUAN Jiancheng, ZHAO Jun. Research and progress of new environmentally friendly flame retardants[J]. Chemical Management, 2015(5): 226.
[5] TOTOLIN V, SARMADI M, MANOLACHE S O, et al. Environmentally friendly flame-retardant materials produced by atmospheric pressure plasma modifications[J]. Journal of Applied Polymer Science, 2012, 124(1): 116-122.
doi: 10.1002/app.35087
[6] LI P, WANG B, LIU Y Y, et al. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics[J]. Carbohydrate Polymers, 2020, 237(3): 1-10.
[7] LI P, LIU C, XU Y J, et al. Novel and eco-friendly flame-retardant cotton fabrics with lignosulfonate and chitosan through LbL: flame retardancy, smoke suppression and flame-retardant mechanism[J]. Polymer Degradation and Stability, 2020. DOI: 10.1016/j.polymdegradstab.2020.109302.
doi: 10.1016/j.polymdegradstab.2020.109302.
[8] CAROSIO F, FONTAINE G, ALONGI J, et al. Starch-based layer by layer assembly: efficient and sustainable approach to cotton fire protection[J]. ACS Applied Materials & Interfaces, 2015, 7(22): 12158-12167.
[9] CHENG X W, GUAN J P, YANG X H, et al. Durable flame retardant wool fabric treated by phytic acid and TiO2 using an exhaustion-assisted pad-dry-cure process[J]. Thermochimica Acta, 2018, 655(5): 28-36.
[10] ZHANG Z, MA Z, LENG Q, et al. Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions[J]. International Journal of Biological Macromolecules, 2019, 140(8): 303-310.
doi: 10.1016/j.ijbiomac.2019.08.049
[11] 王华清, 闫红强. 生物基三组分自组装涂层构筑及其对苎麻织物的阻燃改性[J]. 纺织学报, 2021, 42(4): 132-138.
WANG Huaqing, YAN Hongqiang. Construction of bio-based three-component self-assembled coating for flame retardancy of ramie fabrics[J]. Journal of Textile Research, 2021, 42(4): 132-138.
[12] ALONGI J, CARLETTO R A, BLASIO A D, et al. DNA: a novel, green, natural flame retardant and suppressant for cotton[J]. Journal of Materials Chemistry A, 2013, 1(15): 4779-4785.
doi: 10.1039/c3ta00107e
[13] ALONGI J, DI BLASIO A, MILNES J, et al. Thermal degradation of DNA, an all-in-one natural intumescent flame retardant[J]. Polymer Degradation and Stability, 2015, 113(3): 110-118.
doi: 10.1016/j.polymdegradstab.2014.11.001
[14] SURYAPRABHA T, SETHURAMAN M G. Fabrication of a superhydrophobic and flame-retardant cotton fabric using a DNA-based coating[J]. Journal of Materials Science, 2020, 55(26): 1-11.
doi: 10.1007/s10853-019-03876-z
[15] 陈国强. 紫外线辐照对棉纤维力学性能的影响[J]. 棉纺织技术, 2015(3): 37-39.
CHEN Guoqiang. The effect of ultraviolet radiation on the mechanical properties of cotton fiber[J]. Cotton Textile Technology, 2015(3): 37-39.
[16] WENG P X, YIN X Z, YANG S W, et al. Functionalized magnesium hydroxide fluids/acrylate-coated hybrid cotton fabric with enhanced mechanical, flame retardant and shape-memory properties[J]. Cellulose, 2017, 25(2): 1425-1436.
doi: 10.1007/s10570-017-1611-4
[17] YU B, TAO Y J, LIU L, et al. Thermal and flame retardant properties of transparent UV-curing epoxy acrylate coatings with POSS-based phosphonate acrylate[J]. RSC Advances, 2015, 5(8): 75254-75262.
doi: 10.1039/C5RA11805K
[1] XIONG Yonghui, WANG Dong, DU Changsen, FU Shaohai. Preparation of aqueous dispersion system of bisneopentyl glycol dithiopyrophosphate and its application in flame-retardant viscose fiber [J]. Journal of Textile Research, 2022, 43(07): 22-28.
[2] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[3] YANG Yao, CHENG Wei, YU Yuanyuan, WANG Qiang, WANG Ping, ZHOU Man. Application of antibacterial and antibacterial adhesion finishing agents in cotton fabric modification [J]. Journal of Textile Research, 2022, 43(07): 104-110.
[4] LI Pingyang, FU Can, DONG Lingling. Preparation and performance of flame retardant and hydrophobic cotton fabric [J]. Journal of Textile Research, 2022, 43(06): 107-114.
[5] WANG Zongqian, CHENG Lüzhu, JIN Xianhua, XIA Liping. Testing method for permethrin content in cotton fabrics based on use of ultraviolet spectroscopy [J]. Journal of Textile Research, 2022, 43(06): 127-132.
[6] LIU Yu, XIE Ruyi, SONG Yawei, QI Yuanzhang, WANG Hui, FANG Kuanjun. One-bath pad dyeing technology for polyester/cotton fabric [J]. Journal of Textile Research, 2022, 43(05): 18-25.
[7] HOU Qianqian, LI Wenxi, ZHAO Meihua. Cyanotype process of cotton fabric under photocatalytic conditions [J]. Journal of Textile Research, 2022, 43(04): 110-116.
[8] WANG Dongwei, FANG Kuanjun, LIU Xiuming, ZHANG Xinqing, AN Fangfang. Preparation of amino-modified Reactive Red 195/polymer nanospheres and its application on dyeing of cotton fabrics [J]. Journal of Textile Research, 2022, 43(04): 90-96.
[9] HE Yingting, LI Min, FU Shaohai. Preparation and reduction-oxidation process of indigo dispersant [J]. Journal of Textile Research, 2022, 43(04): 84-89.
[10] SHI Sheng, WANG Yan, LI Fei, TANG Jiandong, GAO Xiangyu, HOU Wensheng, GUO Hong, WANG Shuhua, JI Jiaqi. Efficient separation of polyester and cotton from waste blended fabrics with dilute oxalic acid solution [J]. Journal of Textile Research, 2022, 43(02): 140-148.
[11] FANG Shuaijun, ZHENG Peixiao, CHENG Shuangjuan, LI Huanhuan, QIAN Hongfei. Establishment of mathematical model and quantitative analysis for grafting rate of methylacrylamide grafted silk [J]. Journal of Textile Research, 2022, 43(02): 156-161.
[12] MA Yiping, FAN Wuhou, WU Jinchuan, PU Zongyao. Preparation and application of fully aqueous organic-inorganic hybrid fluorine-free water-repellant finishing agents [J]. Journal of Textile Research, 2022, 43(02): 183-188.
[13] LUO Xiaolei, LIU Lin, YAO Juming. Preparation and study of pure biomass cellulose aerogels for flame retardancy [J]. Journal of Textile Research, 2022, 43(01): 1-8.
[14] GAO Qiang, WANG Xiao, GUO Yajie, CHEN Ru, WEI Ju. Preparation and performance of cotton based Ti3C2Tx oil-water separation membrane [J]. Journal of Textile Research, 2022, 43(01): 172-177.
[15] ZOU Lihua, YANG Li, LAN Chuntao, RUAN Fangtao, XU Zhenzhen. Electromagnetic shielding properties of graphene oxide/polypyrrole coated cotton fabric with layer-by-layer assembling method [J]. Journal of Textile Research, 2021, 42(12): 111-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .