Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 64-70.doi: 10.13475/j.fzxb.20210205807

• Fiber Materials • Previous Articles     Next Articles

Preparation and selective adsorption of calixarene/reduced graphene oxide fibers

TAO Xuchen(), LI Lin, XU Zhenzhen   

  1. College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2021-02-23 Revised:2021-10-07 Online:2022-03-15 Published:2022-03-29

Abstract:

In order to enhance the equilibrium adsorption capacity of calixarene fibers for Pt (Ⅱ), calixarene/reduced graphene oxide (CrGO) fibers were prepared through amidation, reduction and electrospinning. CrGO fibers were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, Raman spectrograph and thermogravimetric analyzer. The adsorption selectivity, adsorption kinetics and adsorption isotherm model of CrGO fibers were investigated. The results indicate that CrGO fibers with diameter of (2±0.5) μm possess some wrinkled morphology, low level of microstructure defects and a high thermal stability. In the presence of Na(I) and Hg (Ⅱ), CrGO fibers exhibit selective adsorption for Pt (Ⅱ), which fits with the pseudo second order adsorption kinetic model and Langmuir adsorption isothermal model. The adsorption behavior of CrGO fibers is mainly attributed to monolayer, chemical, endothermic and preferential adsorption. The equilibrium adsorption capacity of CrGO fibers reaches 113 mg/g at the temperature of 293 K for 240 min, which demonstrates an enhancement by 303% compared with calixarene polyimide fibers.

Key words: calixarene, reduced graphene oxide, graphene fiber, selective adsorption, adsorption kinetics, electrospinning

CLC Number: 

  • TQ342.86

Fig.1

Preparation method of CrGO fibers"

Fig.2

SEM images of CrGO fibers at different magnification"

Fig.3

FT-IR spectra of GO, thioether calixarene and CrGO fibers"

Fig.4

Raman spectra of GO, thioether calixarene and CrGO fibers"

Fig.5

TG curves of GO and CrGO fibers"

Tab.1

Equilibrium adsorption uptake of GO and CrGO fibers for various metal ions"

纤维名称 金属离子平衡吸附量平均值/ (mg·g-1)
Na(Ⅰ) Pt(Ⅱ) Hg(Ⅱ)
GO纤维 115.58 20.33 18.34
CrGO纤维 10.21 108.65 40.42

Fig.6

Putative model of coordination"

Fig.7

Adsorption kinetics curve of Pt (Ⅱ) on CrGO fibers"

Tab.2

Parameters of adsorption isotherm models"

温度/
K
Langmuir模型 Freundlich模型
qm/
(mg·g-1)
KL/
(L·mg-1)
相关系数
R2
n KF/
(mg·g-1)
相关系数
R2
283 97.08 0.173 9 0.988 7 3.26 20.91 0.908 4
293 120.48 0.137 2 0.997 6 3.37 25.08 0.838 3
303 129.87 0.130 1 0.976 1 2.84 23.39 0.821 1
[1] CHITPONG N, HUSSON S M. High capacity nanofiber based ion-exchange membranes for the selective recovery of heavy metals from impaired waters[J]. Separation and Purification Technology, 2017,179:94-103.
doi: 10.1016/j.seppur.2017.02.009
[2] XUE L, REN J, WANG S, et al. Preparation of nanofiber aerogels by electrospinning and studying of its adsorption properties for heavy metal and dyes[J]. Journal of Porous Materials, 2020,27(6):1589-1599.
doi: 10.1007/s10934-020-00937-6
[3] ZAYTSEV A V, BULMER R, KOZHEVNIKOV V N, et al. Exploring the subtle effect of aliphatic ring size on minor actinide extraction properties and metal ion speciation in bis-1,2,4-triazine ligands[J]. Chemistry:A European Journal, 2020,26(2):428-437.
doi: 10.1002/chem.v26.2
[4] XU P, WANG W, QIAN X M, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019,449:57-68.
doi: 10.1016/j.desal.2018.10.019
[5] ALI S A, KAZI I W, ULLAH N. New chelating ion exchange resin synthesized via the cyclopolymerization protocol and its uptake performance for metal ion removal[J]. Industrial and Engineering Chemistry Research, 2015,54(40):9689-9698.
doi: 10.1021/acs.iecr.5b02267
[6] LIN S, WEI W, WU X H, et al. Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: adsorption performance and mechanisms[J]. Journal of Hazardous Materials, 2015,299(6):10-17.
doi: 10.1016/j.jhazmat.2015.05.050
[7] HORYAT G, FRKANEC L, CINDRO N, et al. A comprehensive study of the complexation of alkali metal cations by lower rim calix[4]arene amide derivatives[J]. Physical Chemistry Chemical Physics, 2017,19(35):24316-24329.
doi: 10.1039/C7CP03920D
[8] TAO X C, HE J X. Synjournal of calix[4]arene thia derivative and extraction effect of substituents on mercury (Ⅱ) and lead (Ⅱ)[J]. Journal of Donghua University (English Edition), 2017,34(1):49-52.
[9] 陶旭晨, 李林. 选择性吸附Pt(Ⅳ)的杯芳烃纤维制备及其吸附动力学[J]. 纺织学报, 2019,40(3):20-25.
TAO Xuchen, LI Lin. Preparation and adsorption kinetics of calixarene fibers with selective adsorption of Pt (IV)[J]. Journal of Textile Research, 2019,40(3):20-25.
[10] ZHANG P, WANG Y L, ZHANG D X, et al. Calixarene functionalized graphene oxide composites for adsorption of neodymium ions from the aqueous phase[J]. RSC Advances, 2016(6):30384-30394.
[11] FONG H, CHUN I, RENEKER D H. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999,40(16):4585-4592.
doi: 10.1016/S0032-3861(99)00068-3
[12] SHEKH M I, PATEL D M, PATEL K P, et al. Electrospun nanofibers of poly(NPEMA-co-CMPMA): used as heavy metal ion remover and water sanitizer[J]. Fibers and Polymers, 2016,17(3):358-370.
doi: 10.1007/s12221-016-5861-9
[13] 余改丽, 张弘楠, 覃小红, 等. 石墨烯/PAN纳米复合膜的制备及其力学性能[J]. 东华大学学报(自然科学版), 2017,43(3):4-10.
YU Gaili, ZHANG Hongnan, QIN Xiaohong, et al. Preparation and mechanical property of graphene/PAN composite membrane[J]. Journal of Donghua Univer-sity(Natural Science), 2017,43(3):4-10.
[14] 赵明, 闫立群. 石墨烯/聚偏氟乙烯纳米纤维的制备[J]. 纺织学报, 2016,37(10):158-161.
ZHAO Min, YAN Liqun. Preparation of polyvinylidene fluoride composite nanofibers by electrospinning[J]. Journal of Textile Research, 2016,37(10):158-161.
[15] 庞月红, 李朝霞, 沈晓芳, 等. 静电纺丝技术制备聚苯乙烯石墨烯复合纳米纤维[J]. 化学通报, 2012,75(11):1040-1043.
PANG Yuehong, LI Zhaoxia, SHEN Xiaofang, et al. Preparation of polystyrene graphene composite nanofibers by electrospinning technique[J]. Chemistry Bulletin, 2012,75(11):1040-1043.
[16] 陶旭晨, 凤权. 静电纺杯芳烃纤维的制备及其对Pt(Ⅳ)选择性吸附性能[J]. 纺织学报, 2017,38(3):13-17.
TAO Xuchen, FENG Quan. Fabrication of calixarene electrospun fibers and selective adsorption on Pt (IV)[J]. Journal of Textile Research, 2017,38(3):13-17.
[17] 丁彬, 俞建勇. 静电纺丝与纳米纤维[M]. 北京: 中国纺织出版社, 2011:61-63.
DING Bin, YU Jianyong. Electrospinning and nanofibers[M]. Beijing: China Textile & Apparel Press, 2011:61-63.
[18] PAI C L, BOYCE M C, RUTLEDGE G C. Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide[J]. Macromolecules, 2009,42(6):2102-2114.
doi: 10.1021/ma802529h
[19] 田银彩, 张浩鹏, 李博琛, 等. 静电纺聚丙烯腈/石墨烯碳纳米纤维的结构与性能[J]. 纺织学报, 2018,39(10):24-31.
TIAN Yincai, ZHANG Haopeng, LI Bochen, et al. Structure and properties of electrospun polyacrylonitrile /graphene carbon nanofibers[J]. Journal of Textile Research, 2018,39(10):24-31.
doi: 10.1177/004051756903900104
[20] 关勇, 孔繁荣. 电荷半径比在无机化学中的某些应用[J]. 北京农学院学报, 1994,9(2):120-124.
GUAN Yong, KONG Fanrong. Some applications of charge radius ratio in inorganic chemistry[J]. Journal of Beijing Agricultural College, 1994,9(2):120-124.
[21] 宋天佑. 简明无机化学[M]. 北京: 高等教育出版社, 2007: 563-564.
SONG Tianyou. Concise inorganic chemistry[M]. Beijing: Higer Education Press, 2007: 563-564.
[22] GE Y, XIAO D, LI Z, et al. Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers[J]. Journal of Materials Chemistry A, 2014,2(7):2136-2145.
doi: 10.1039/C3TA14333C
[23] DINDA D, SAHA S K. Sulfuric acid doped poly diaminopyridine/graphene composite to remove high concentration of toxic Cr(VI)[J]. Journal of Hazardous Materials, 2015,291:93-101.
doi: 10.1016/j.jhazmat.2015.02.065
[24] TSENG R L, WU F C. Inferring the favorable adsorption level and the concurrent multi-stage process with the freundlich constant[J]. Journal of Hazardous Materials, 2008,155(1/2):277-287.
doi: 10.1016/j.jhazmat.2007.11.061
[1] JIN Xu, LIU Fang, DU Xuan, HUA Chao, GONG Xuzhong, ZHANG Xiuqin, WANG Bin. Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation [J]. Journal of Textile Research, 2022, 43(03): 201-209.
[2] ZHANG Yu, LIU Laijun, LI Chaojing, JIN Qiaoqiao, XIE Qianyang, LI Peilun, WANG Fujun, WANG Lu. Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability [J]. Journal of Textile Research, 2022, 43(03): 24-30.
[3] ZHANG Aiqin, HAO Jiacheng, WANG Zhi, WANG Yongchao, LIU Shuqiang, DONG Hailiang, JIA Husheng, XU Bingshe. Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers [J]. Journal of Textile Research, 2022, 43(03): 50-57.
[4] ZHOU Xiaoya, MA Dinghai, HU Chengye, HONG Jianhan, LIU Yongkun, HAN Xiao, YAN Tao. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarns [J]. Journal of Textile Research, 2022, 43(02): 110-115.
[5] XU Shilin, YANG Shiyu, ZHANG Yaru, HU Liu, HU Yi. Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes [J]. Journal of Textile Research, 2021, 42(12): 42-42.
[6] JIA Lin, WANG Xixian, LI Huanyu, ZHANG Haixia, QIN Xiaohong. Preparation and properties of polyacrylonitrile/BaTiO3 composite nanofibrous filter membrane [J]. Journal of Textile Research, 2021, 42(12): 34-41.
[7] WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33.
[8] ZHOU Yuanyuan, ZHENG Yuming, WU Xiaoqiong, SHAO Zaidong. Research progress of performance enhancement methods for electrospun nanofiber-based photocatalyst [J]. Journal of Textile Research, 2021, 42(11): 179-186.
[9] YU Rufang, HONG Xinghua, ZHU Chengyan, JIN Zimin, WAN Junmin. Electrical heating properties of fabrics coated by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(10): 126-131.
[10] WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30.
[11] QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45.
[12] CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties [J]. Journal of Textile Research, 2021, 42(09): 46-51.
[13] ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56.
[14] YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68.
[15] YANG Zhi, LIU Chengkun, WU Hong, MAO Xue. Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2021, 42(07): 54-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!