Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 29-36.doi: 10.13475/j.fzxb.20210300808

• Fiber Materials • Previous Articles     Next Articles

Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone

QU Yun, MA Wei, LIU Ying, REN Xuehong()   

  1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2021-03-01 Revised:2022-03-16 Online:2022-06-15 Published:2022-07-15
  • Contact: REN Xuehong E-mail:xuehongr@hotmail.com

Abstract:

In order to prepare a novel fiber membrane with high antibacterial performance and photodegradation function, Ag-ZnO composite particles with different mass fractions were added to polycaprolactone(PCL) and polyhydroxybutyrate(PHB) composite fiber membrane by electrospinning technology. The prepared Ag-ZnO-PHB/PCL fibrous membranes were characterized by scanning electron microscope, X-ray diffraction, thermogravimetric analysis, and fourier transform infrared spectroscopy. Mechanical properties, photocatalytic performance and antibacterial property were also investigated. The experimental data shows that the antibacterial rates of fibrous membranes against E. coli O157:H7 and S. aureus within 60 min reach 84.12% and 97.99% respectively. The fibrous membrane has inhibitory effect on biofilm to a certain extent. The degradation of methylene blue solution was significant when the fiber membrane was irradiated under ultraviolet light for 12 min. The fibrous membrane also has excellent mechanical properties and good biocompatibility, which demonstrates a great potential for application in the field of antibacterial packaging materials and medical dressings.

Key words: Ag-ZnO particle, electrospinning, antibacterial property, photodegradation, mechanical property, polycaprolactone, composite fiber membrane

CLC Number: 

  • TB383.2

Fig.1

SEM image(a) and size distribution(b) of Ag-ZnO"

Fig.2

EDS mapping images of different elements in Ag-ZnO"

Fig.3

SEM images of Ag-ZnO-PHB/PCL membranes with different content of Ag-ZnO particle"

Fig.4

Breaking strength and elongation at break of PHB/PCL and Ag-ZnO-PHB/PCL membranes"

Fig.5

FT-IR spectra of ZnO, Ag-ZnO, PHB/PCL and Ag-ZnO-PHB/PCL membranes"

Fig.6

XRD spectra of ZnO, Ag-ZnO, PHB/PCL and Ag-ZnO-PHB/PCL membranes"

Fig.7

TG(a) and DTG(b) curves of PHB/PCL and Ag-ZnO-PHB/PCL membranes"

Tab.1

Antibacterial property of PHB/PCL, ZnO-PHB/PCL and Ag-ZnO-PHB/PCL"

样品 接触时
间/min
抑菌率/%
对大肠杆菌 对金黄色葡萄球菌
PHB/PCL 60 75.66 45.44
ZnO-PHB/PCL 60 78.12 71.67
Ag-ZnO-PHB/PCL 10 58.72 89.95
30 62.95 97.51
60 84.12 97.99

Tab.2

Biofilm test for E. coli bacterial"

样品 接触时间/
min
菌落数量/
(CFU·cm-2)
PHB-PCL 30 3.88×106
120 4.67×106
Ag-ZnO-PHB/PCL 30 5.60×105
120 4.01×104

Fig.8

SEM images of bacterial biofilm (E. coli)"

Fig.9

Photos of Methylene Blue solution degradation test"

[1] 赵欣, 朱健健, 李梦, 等. 我国抗菌剂的应用与发展现状[J]. 材料导报, 2016, 30(7): 68-73.
ZHAO Xin, ZHU Jianjian, LI Meng, et al. Domestic application and development status of anti-bacterial agent[J]. Materials Review, 2016, 30(7): 68-73.
[2] 孙辉, 张恒源, 咸玉龙, 等. TiO2-Ag/聚乳酸纳米复合纤维的制备及其抗菌性能[J]. 纺织学报, 2019, 40(4): 1-6.
SUN Hui, ZHANG Hengyuan, XIAN Yulong, et al. Preparation and antibacterial properties of TiO2-Ag/poly(lactic acid) nanocomposite fibers[J]. Journal of Textile Research, 2019, 40(4): 1-6.
doi: 10.1177/004051757004000101
[3] ASIT B S, TAPAN K. Polyhydroxyalkanoates based copolymers[J]. International Journal of Biological Macromolecules, 2019. DOI: 10.1016/j.ijbiomac.2019.08.147.
doi: 10.1016/j.ijbiomac.2019.08.147
[4] FAN Xiaoyan, REN Xuehong, HUANG Tungshi, et al. Cytocompatible antibacterial fibrous membranes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and quaternarized N-halamine polymer[J]. Royal Society of Chemistry Advances, 2016, 42(6): 600-610.
[5] 张连来, 邓先模. PHB与PCL、PECL可生物降解高分子共混体系的研究[J]. 高分子材料科学与工程, 1994(1):64-68.
ZHANG Lianlai, DENG Xianmo. Biodegradable polymer blends containing of PHB and PCL, PECL[J]. Polymeric Materials Science and Engineering, 1994(1): 64-68.
[6] LIN Xinghuan, YIN Maoli, LIU Ying, et al. Biodegradable polyhydroxybutyrate/poly-ε-caprolactone fibrous membranes modified by silica composite hydrol for super hydrophobic and outstanding antibacterial application[J]. Journal of Industrial and Engineering Chemistry, 2018. DOI: 10.1016/j.jiec.2018.02.031.
doi: 10.1016/j.jiec.2018.02.031
[7] MICAELA D E, FEDERICA C, FEDERICA B, et al. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxy-apatite[J]. Materials Science and Engineering: C, 2019. DOI: 10.1016/j.msec.2019.03.014.
doi: 10.1016/j.msec.2019.03.014
[8] MAHBOD A, MINA N, MAHYAR P S, et al. The role of polycaprolactone-triol (PCL-T) in biomedical applications: a state-of-the-art[J]. European Polymer Journal, 2020. DOI: 10.1016/j.eurpolymj.2020.109701.
doi: 10.1016/j.eurpolymj.2020.109701
[9] ANUKORN P, SINEENAT S, PAWEENA W, et al. Microwave-assisted synthesis, photocatalysis and antibacterial activity of Ag nanoparticles supported on ZnO flowers[J]. Journal of Physics and Chemistry of Solids, 2019, 126: 170-177.
doi: 10.1016/j.jpcs.2018.11.007
[10] 张艳艳, 詹璐瑶, 王培, 等. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
ZHANG Yanyan, ZHAN Luyao, WANG Pei, et al. Research progress in preoaration of durable antibacterial cotton fabrics with inorganic nanoparticles[J]. Journal of Textile Research, 2020, 41(11): 174-180.
doi: 10.1177/004051757104100215
[11] CUI Junwei, WU Dapeng, LI Zhenyun, et al. Mesoporous Ag/ZnO hybrid cages derived from ZIF-8 for enhanced photocatalytic and antibacterial activi-ties[J]. Ceramics International, 2021, 47(11): 15759-15770.
doi: 10.1016/j.ceramint.2021.02.148
[12] JEEVAN J, SOMNATH B. Hybrid ZnO: Ag core-shell nanoparticles for wastewater treatment: growth mechanism and plasmonically enhanced photocatalytic activity[J]. Applied Surface Science, 2018. DOI: 10.1016/j.apsusc.2018.06.028.
doi: 10.1016/j.apsusc.2018.06.028
[13] LIU Hairui, LIU Hui, YANG Jie, et al. Microwave-assisted one-pot synthesis of Ag decorated flower-like ZnO composites photocatalysts for dye degradation and NO removal[J]. Ceramics International, 2019, 45(16): 20133-20140.
doi: 10.1016/j.ceramint.2019.06.279
[14] VAIANO V, MATARANGOLO M, MURCIA J J, et al. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag[J]. Applied Catalysis B Environmental, 2018. DOI: 10.1016/j.apcatb.2017.11.075.
doi: 10.1016/j.apcatb.2017.11.075
[15] PANCHAL P, PAUL D R, SHARMA A, et al. Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water[J]. Journal of Colloid and Interface Science, 2019. DOI: 10.1016/j.jcis.2019.12.079.
doi: 10.1016/j.jcis.2019.12.079
[16] HU Min, LI Chenwen, LI Xin, et al. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity[J]. Artificial cells, Nanomedicine and Biotechnology, 2018. DOI: 10.1080/21691401.2017.1366339.
doi: 10.1080/21691401.2017.1366339
[17] LI Wandi, GAO Jing, WANG Lu. Enhancement of durable photocatalytic properties of cotton/polyester fabrics using TiO2/SiO2 via one step sonosynthesis[J]. Journal of Industrial Textiles, 2017, 46(8): 1633-1655.
doi: 10.1177/1528083716629138
[18] BHATTARAI R, BACHU R, BODDU S, et al. Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery[J]. Pharmaceutics, 2019. DOI: 10.3390/pharmaceutics11010005.
doi: 10.3390/pharmaceutics11010005
[19] 武志富, 李素娟. 氢氧化锌和氧化锌的红外光谱特征[J]. 光谱实验室, 2012, 29(4): 2172-2175.
WU Zhifu, LI Sujuan. Infrared spectrum characteristics of zinc hydroxide and zinc oxide[J]. Spectroscopy Laboratory, 2012, 29(4): 2172-2175.
[20] ISHITA M, ABHAY S, POORNIMA D, et al. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli[J]. Colloids and Surfaces B: Biointerfaces, 2014, 115: 359-367.
doi: 10.1016/j.colsurfb.2013.12.005
[21] 田格, 吴琼, 孙素琴, 等. 二维傅里叶变换红外(2D FTIR)相关光谱技术研究聚羟基丁酸酯(PHB)的熔融与结晶[J]. 高等学校化学学报, 2002, 16(8): 1627-1631.
TIAN Ge, WU Qiong, SUN Suqin, et al. Studies on Pre-melting and crystallization process of biosynthesized poly (3-hydroxybutyrate) using two-dimensional fourier-transform infrared spectroscopy[J]. Chemical Journal of Chinese University, 2002, 16(8): 1627-1631.
[22] KADAM A N, BHOPATE D P, KONDALKAR V V, et al. Facile synthesis of Ag-ZnO core-shell nanostructures with enhanced photocatalytic activity[J]. Journal of Industrial and Engineering Chemistry, 2018. DOI: 10.1016/j.jiec.2017.12.003.
doi: 10.1016/j.jiec.2017.12.003
[23] 杨军, 黄陵陵, 姚宝晶. 聚己内酯热分解机制及其热分解产物[J]. 科技导报, 2011, 29(7): 58-61.
YANG Jun, HUANG Lingling, YAO Baojing, et al. Thermal degradation mechanism and pyrolysis of the polycaprolactone[J]. Science and Technology Review, 2011, 29(7): 58-61.
[24] FAN Xiaoyan, YIN Maoli, JIANG Zhiming, et al. Antibacterial poly(3-hydroxybutyrate-co-4-hydroxybutyrate) fibrous membranes containing quaternary ammonium salts[J]. Polymers for Advanced Technologies, 2016, 27(12): 1617-1624.
doi: 10.1002/pat.3839
[25] LIN Xinghuan, LI Shanshan, JUNG Joonhoo, et al. PHB/PCL fibrous membranes modified with SiO2@TiO2-based core@shell composite nanoparticles for hydrophobic and antibacterial applications[J]. RSC Advances, 2019, 9(40): 23071-23080.
doi: 10.1039/c9ra04465e
[26] MA Wei, LI Lin, LIN Xinghuan, et al. Novel ZnO/N-halamine-mediated multifunctional dressings as quick antibacterial agent for biomedical applications[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31411-31420.
[27] ISHITA M, ABHAY S, POORNIMA D, et al. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S.aureus and GFP-expressing antibiotic resistant E. coli[J]. Colloids and Surfaces B:Biointerfaces, 2014. DOI: 10.1016/j.colsurfb.2013.12.005.
doi: 10.1016/j.colsurfb.2013.12.005
[28] LIU Yang, HE Lili, MUSTAPHA A, et al. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7[J]. Journal of Applied Microbiology, 2009, 107(4): 158-164.
[29] 况慧娟, 杨林, 许恒毅, 等. 纳米氧化锌抗菌性能及机制的研究进展[J]. 中国药理学与毒理学杂志, 2015, 29(1): 153-157.
KUANG Huijuan, YANG Lin, XU Hengyi, et al. Antibacterial properties and mechanism of zinc oxide nanoparticles: research progress[J]. Chinese Journal of Pharmacology and Toxicology, 2015, 29(1): 153-157.
[1] HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28.
[2] OU Kangkang, QI Linya, HOU Yijun, FAN Tianhua, QI Kun, WANG Baoxiu, WANG Huaping. Preparation and properties of nanofiber-based unidirectional water-transport antibacterial wound dressings [J]. Journal of Textile Research, 2022, 43(06): 49-56.
[3] SUN Huanwei, ZHANG Heng, CUI Jingqiang, ZHU Feichao, WANG Guofeng, SU Tianyang, ZHEN Qi. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process [J]. Journal of Textile Research, 2022, 43(06): 86-93.
[4] LI Qin, LI Xingxing, XIE Fangfang, ZHOU Wenlong, CHEN Kaiyi, LIU Yuqing. Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods [J]. Journal of Textile Research, 2022, 43(05): 178-184.
[5] ZHAO Bobo, WANG Liang, LI Jingyu, WAN Gang, XIA Zhaopeng, LIU Yong. Preparation and properties of hexamethylenetetramine cross-linked phenolic fibers [J]. Journal of Textile Research, 2022, 43(05): 57-62.
[6] CHEN Feng, JI Zhongli, YU Wenhan, DONG Wuqiang, WANG Qianlin, WANG Deguo. Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters [J]. Journal of Textile Research, 2022, 43(05): 63-69.
[7] CHEN Mingjun, LI Haoyi, YANG Weimin. Physical model and effects of electric field on jets in polymer melt differential electrospinning [J]. Journal of Textile Research, 2022, 43(05): 70-76.
[8] SUN Zheru, ZHANG Qingle, HAO Lincong, CHENG Lu, XIA Xin. Preparation and performance of polyurethane/polydimethylsiloxane waterproof and moisture permeable membrane with star like topological geometry structure [J]. Journal of Textile Research, 2022, 43(04): 40-46.
[9] SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites [J]. Journal of Textile Research, 2022, 43(04): 68-73.
[10] JIN Xu, LIU Fang, DU Xuan, HUA Chao, GONG Xuzhong, ZHANG Xiuqin, WANG Bin. Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation [J]. Journal of Textile Research, 2022, 43(03): 201-209.
[11] ZHANG Yu, LIU Laijun, LI Chaojing, JIN Qiaoqiao, XIE Qianyang, LI Peilun, WANG Fujun, WANG Lu. Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability [J]. Journal of Textile Research, 2022, 43(03): 24-30.
[12] FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43.
[13] ZHANG Aiqin, HAO Jiacheng, WANG Zhi, WANG Yongchao, LIU Shuqiang, DONG Hailiang, JIA Husheng, XU Bingshe. Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers [J]. Journal of Textile Research, 2022, 43(03): 50-57.
[14] TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70.
[15] CHEN Yong, WU Jing, WANG Chaosheng, PAN Xiaohu, LI Naixiang, DAI Junming, WANG Huaping. Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-co-terephthalate) fiber [J]. Journal of Textile Research, 2022, 43(02): 37-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!