Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 29-36.doi: 10.13475/j.fzxb.20210300808
• Fiber Materials • Previous Articles Next Articles
QU Yun, MA Wei, LIU Ying, REN Xuehong()
CLC Number:
[1] | 赵欣, 朱健健, 李梦, 等. 我国抗菌剂的应用与发展现状[J]. 材料导报, 2016, 30(7): 68-73. |
ZHAO Xin, ZHU Jianjian, LI Meng, et al. Domestic application and development status of anti-bacterial agent[J]. Materials Review, 2016, 30(7): 68-73. | |
[2] | 孙辉, 张恒源, 咸玉龙, 等. TiO2-Ag/聚乳酸纳米复合纤维的制备及其抗菌性能[J]. 纺织学报, 2019, 40(4): 1-6. |
SUN Hui, ZHANG Hengyuan, XIAN Yulong, et al. Preparation and antibacterial properties of TiO2-Ag/poly(lactic acid) nanocomposite fibers[J]. Journal of Textile Research, 2019, 40(4): 1-6.
doi: 10.1177/004051757004000101 |
|
[3] |
ASIT B S, TAPAN K. Polyhydroxyalkanoates based copolymers[J]. International Journal of Biological Macromolecules, 2019. DOI: 10.1016/j.ijbiomac.2019.08.147.
doi: 10.1016/j.ijbiomac.2019.08.147 |
[4] | FAN Xiaoyan, REN Xuehong, HUANG Tungshi, et al. Cytocompatible antibacterial fibrous membranes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and quaternarized N-halamine polymer[J]. Royal Society of Chemistry Advances, 2016, 42(6): 600-610. |
[5] | 张连来, 邓先模. PHB与PCL、PECL可生物降解高分子共混体系的研究[J]. 高分子材料科学与工程, 1994(1):64-68. |
ZHANG Lianlai, DENG Xianmo. Biodegradable polymer blends containing of PHB and PCL, PECL[J]. Polymeric Materials Science and Engineering, 1994(1): 64-68. | |
[6] |
LIN Xinghuan, YIN Maoli, LIU Ying, et al. Biodegradable polyhydroxybutyrate/poly-ε-caprolactone fibrous membranes modified by silica composite hydrol for super hydrophobic and outstanding antibacterial application[J]. Journal of Industrial and Engineering Chemistry, 2018. DOI: 10.1016/j.jiec.2018.02.031.
doi: 10.1016/j.jiec.2018.02.031 |
[7] |
MICAELA D E, FEDERICA C, FEDERICA B, et al. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxy-apatite[J]. Materials Science and Engineering: C, 2019. DOI: 10.1016/j.msec.2019.03.014.
doi: 10.1016/j.msec.2019.03.014 |
[8] |
MAHBOD A, MINA N, MAHYAR P S, et al. The role of polycaprolactone-triol (PCL-T) in biomedical applications: a state-of-the-art[J]. European Polymer Journal, 2020. DOI: 10.1016/j.eurpolymj.2020.109701.
doi: 10.1016/j.eurpolymj.2020.109701 |
[9] |
ANUKORN P, SINEENAT S, PAWEENA W, et al. Microwave-assisted synthesis, photocatalysis and antibacterial activity of Ag nanoparticles supported on ZnO flowers[J]. Journal of Physics and Chemistry of Solids, 2019, 126: 170-177.
doi: 10.1016/j.jpcs.2018.11.007 |
[10] | 张艳艳, 詹璐瑶, 王培, 等. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180. |
ZHANG Yanyan, ZHAN Luyao, WANG Pei, et al. Research progress in preoaration of durable antibacterial cotton fabrics with inorganic nanoparticles[J]. Journal of Textile Research, 2020, 41(11): 174-180.
doi: 10.1177/004051757104100215 |
|
[11] |
CUI Junwei, WU Dapeng, LI Zhenyun, et al. Mesoporous Ag/ZnO hybrid cages derived from ZIF-8 for enhanced photocatalytic and antibacterial activi-ties[J]. Ceramics International, 2021, 47(11): 15759-15770.
doi: 10.1016/j.ceramint.2021.02.148 |
[12] |
JEEVAN J, SOMNATH B. Hybrid ZnO: Ag core-shell nanoparticles for wastewater treatment: growth mechanism and plasmonically enhanced photocatalytic activity[J]. Applied Surface Science, 2018. DOI: 10.1016/j.apsusc.2018.06.028.
doi: 10.1016/j.apsusc.2018.06.028 |
[13] |
LIU Hairui, LIU Hui, YANG Jie, et al. Microwave-assisted one-pot synthesis of Ag decorated flower-like ZnO composites photocatalysts for dye degradation and NO removal[J]. Ceramics International, 2019, 45(16): 20133-20140.
doi: 10.1016/j.ceramint.2019.06.279 |
[14] |
VAIANO V, MATARANGOLO M, MURCIA J J, et al. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag[J]. Applied Catalysis B Environmental, 2018. DOI: 10.1016/j.apcatb.2017.11.075.
doi: 10.1016/j.apcatb.2017.11.075 |
[15] |
PANCHAL P, PAUL D R, SHARMA A, et al. Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water[J]. Journal of Colloid and Interface Science, 2019. DOI: 10.1016/j.jcis.2019.12.079.
doi: 10.1016/j.jcis.2019.12.079 |
[16] |
HU Min, LI Chenwen, LI Xin, et al. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity[J]. Artificial cells, Nanomedicine and Biotechnology, 2018. DOI: 10.1080/21691401.2017.1366339.
doi: 10.1080/21691401.2017.1366339 |
[17] |
LI Wandi, GAO Jing, WANG Lu. Enhancement of durable photocatalytic properties of cotton/polyester fabrics using TiO2/SiO2 via one step sonosynthesis[J]. Journal of Industrial Textiles, 2017, 46(8): 1633-1655.
doi: 10.1177/1528083716629138 |
[18] |
BHATTARAI R, BACHU R, BODDU S, et al. Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery[J]. Pharmaceutics, 2019. DOI: 10.3390/pharmaceutics11010005.
doi: 10.3390/pharmaceutics11010005 |
[19] | 武志富, 李素娟. 氢氧化锌和氧化锌的红外光谱特征[J]. 光谱实验室, 2012, 29(4): 2172-2175. |
WU Zhifu, LI Sujuan. Infrared spectrum characteristics of zinc hydroxide and zinc oxide[J]. Spectroscopy Laboratory, 2012, 29(4): 2172-2175. | |
[20] |
ISHITA M, ABHAY S, POORNIMA D, et al. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli[J]. Colloids and Surfaces B: Biointerfaces, 2014, 115: 359-367.
doi: 10.1016/j.colsurfb.2013.12.005 |
[21] | 田格, 吴琼, 孙素琴, 等. 二维傅里叶变换红外(2D FTIR)相关光谱技术研究聚羟基丁酸酯(PHB)的熔融与结晶[J]. 高等学校化学学报, 2002, 16(8): 1627-1631. |
TIAN Ge, WU Qiong, SUN Suqin, et al. Studies on Pre-melting and crystallization process of biosynthesized poly (3-hydroxybutyrate) using two-dimensional fourier-transform infrared spectroscopy[J]. Chemical Journal of Chinese University, 2002, 16(8): 1627-1631. | |
[22] |
KADAM A N, BHOPATE D P, KONDALKAR V V, et al. Facile synthesis of Ag-ZnO core-shell nanostructures with enhanced photocatalytic activity[J]. Journal of Industrial and Engineering Chemistry, 2018. DOI: 10.1016/j.jiec.2017.12.003.
doi: 10.1016/j.jiec.2017.12.003 |
[23] | 杨军, 黄陵陵, 姚宝晶. 聚己内酯热分解机制及其热分解产物[J]. 科技导报, 2011, 29(7): 58-61. |
YANG Jun, HUANG Lingling, YAO Baojing, et al. Thermal degradation mechanism and pyrolysis of the polycaprolactone[J]. Science and Technology Review, 2011, 29(7): 58-61. | |
[24] |
FAN Xiaoyan, YIN Maoli, JIANG Zhiming, et al. Antibacterial poly(3-hydroxybutyrate-co-4-hydroxybutyrate) fibrous membranes containing quaternary ammonium salts[J]. Polymers for Advanced Technologies, 2016, 27(12): 1617-1624.
doi: 10.1002/pat.3839 |
[25] |
LIN Xinghuan, LI Shanshan, JUNG Joonhoo, et al. PHB/PCL fibrous membranes modified with SiO2@TiO2-based core@shell composite nanoparticles for hydrophobic and antibacterial applications[J]. RSC Advances, 2019, 9(40): 23071-23080.
doi: 10.1039/c9ra04465e |
[26] | MA Wei, LI Lin, LIN Xinghuan, et al. Novel ZnO/N-halamine-mediated multifunctional dressings as quick antibacterial agent for biomedical applications[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31411-31420. |
[27] |
ISHITA M, ABHAY S, POORNIMA D, et al. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S.aureus and GFP-expressing antibiotic resistant E. coli[J]. Colloids and Surfaces B:Biointerfaces, 2014. DOI: 10.1016/j.colsurfb.2013.12.005.
doi: 10.1016/j.colsurfb.2013.12.005 |
[28] | LIU Yang, HE Lili, MUSTAPHA A, et al. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7[J]. Journal of Applied Microbiology, 2009, 107(4): 158-164. |
[29] | 况慧娟, 杨林, 许恒毅, 等. 纳米氧化锌抗菌性能及机制的研究进展[J]. 中国药理学与毒理学杂志, 2015, 29(1): 153-157. |
KUANG Huijuan, YANG Lin, XU Hengyi, et al. Antibacterial properties and mechanism of zinc oxide nanoparticles: research progress[J]. Chinese Journal of Pharmacology and Toxicology, 2015, 29(1): 153-157. |
[1] | HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28. |
[2] | OU Kangkang, QI Linya, HOU Yijun, FAN Tianhua, QI Kun, WANG Baoxiu, WANG Huaping. Preparation and properties of nanofiber-based unidirectional water-transport antibacterial wound dressings [J]. Journal of Textile Research, 2022, 43(06): 49-56. |
[3] | SUN Huanwei, ZHANG Heng, CUI Jingqiang, ZHU Feichao, WANG Guofeng, SU Tianyang, ZHEN Qi. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process [J]. Journal of Textile Research, 2022, 43(06): 86-93. |
[4] | LI Qin, LI Xingxing, XIE Fangfang, ZHOU Wenlong, CHEN Kaiyi, LIU Yuqing. Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods [J]. Journal of Textile Research, 2022, 43(05): 178-184. |
[5] | ZHAO Bobo, WANG Liang, LI Jingyu, WAN Gang, XIA Zhaopeng, LIU Yong. Preparation and properties of hexamethylenetetramine cross-linked phenolic fibers [J]. Journal of Textile Research, 2022, 43(05): 57-62. |
[6] | CHEN Feng, JI Zhongli, YU Wenhan, DONG Wuqiang, WANG Qianlin, WANG Deguo. Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters [J]. Journal of Textile Research, 2022, 43(05): 63-69. |
[7] | CHEN Mingjun, LI Haoyi, YANG Weimin. Physical model and effects of electric field on jets in polymer melt differential electrospinning [J]. Journal of Textile Research, 2022, 43(05): 70-76. |
[8] | SUN Zheru, ZHANG Qingle, HAO Lincong, CHENG Lu, XIA Xin. Preparation and performance of polyurethane/polydimethylsiloxane waterproof and moisture permeable membrane with star like topological geometry structure [J]. Journal of Textile Research, 2022, 43(04): 40-46. |
[9] | SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites [J]. Journal of Textile Research, 2022, 43(04): 68-73. |
[10] | JIN Xu, LIU Fang, DU Xuan, HUA Chao, GONG Xuzhong, ZHANG Xiuqin, WANG Bin. Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation [J]. Journal of Textile Research, 2022, 43(03): 201-209. |
[11] | ZHANG Yu, LIU Laijun, LI Chaojing, JIN Qiaoqiao, XIE Qianyang, LI Peilun, WANG Fujun, WANG Lu. Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability [J]. Journal of Textile Research, 2022, 43(03): 24-30. |
[12] | FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43. |
[13] | ZHANG Aiqin, HAO Jiacheng, WANG Zhi, WANG Yongchao, LIU Shuqiang, DONG Hailiang, JIA Husheng, XU Bingshe. Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers [J]. Journal of Textile Research, 2022, 43(03): 50-57. |
[14] | TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70. |
[15] | CHEN Yong, WU Jing, WANG Chaosheng, PAN Xiaohu, LI Naixiang, DAI Junming, WANG Huaping. Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-co-terephthalate) fiber [J]. Journal of Textile Research, 2022, 43(02): 37-43. |
|