Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 8-16.doi: 10.13475/j.fzxb.20210301109
• Academic Salon Column for New Insight of Textile Science and Technology: Recycling and Biodegradable Fiber • Previous Articles Next Articles
WANG Yaning1,2, ZHOU Chufan2, WU Jing1,3(), WANG Huaping2,3
CLC Number:
[1] |
KOLLER M, BRAUNEGG G. Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion[J]. The EuroBiotech Journal, 2018, 2(2):89.
doi: 10.2478/ebtj-2018-0013 |
[2] |
SINGH N, HUI D, SINGH R, et al. Recycling of plastic solid waste: a state of art review and future applications[J]. Composites Part B: Engineering, 2017, 115(4):409-422.
doi: 10.1016/j.compositesb.2016.09.013 |
[3] |
HAIDER T P, VÖLKER C, KRAMM J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie International Edition, 2019, 58(1):50-62.
doi: 10.1002/anie.201805766 |
[4] | EMADIAN S M, ONAY T T, DEMIREL B. Biodegradation of bioplastics in natural environ-ments[J]. Waste Management, 2017, 59(5):26-36. |
[5] |
LI L, LUO Y, LI R, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11):929-937.
doi: 10.1038/s41893-020-0567-9 |
[6] |
ACKERMAN F. Waste management and llimate change[J]. Local Environment, 2000, 5(2):223-229.
doi: 10.1080/13549830050009373 |
[7] |
ROSE M, PALKOVITS R. Isosorbide as a renewable platform chemical for versatile applications:quo vadis[J]. ChemSusChem, 2012, 5(1):167-176.
doi: 10.1002/cssc.201100580 |
[8] |
LICHTENTHALER F W, PETERS S. Carbohydrates as green raw materials for the chemical industry[J]. Comptes Rendus Chimie, 2004, 7(2):65-90.
doi: 10.1016/j.crci.2004.02.002 |
[9] |
WU J, EDUARD P, THIYAGARAJAN S, et al. Isohexide derivatives from renewable resources as chiral building blocks[J]. ChemSusChem, 2011, 4(5):599-603.
doi: 10.1002/cssc.v4.5 |
[10] |
GALBIS J A, GARCIA-MARTIN M D G, PAZ M V D, et al. Synthetic polymers from sugar-based monomers[J]. Chem Rev, 2016, 116(3):1600-1636.
doi: 10.1021/acs.chemrev.5b00242 |
[11] | 虞小三, 王鸣义. 生物基芳香族聚酯的工业化技术及产品应用前景[J]. 石油化工技术与经济, 2019, 35(3):57-61. |
YU Xiaosan, WANG Mingyi. Industrial technology and application prospect of bio-based aromatic poly-esters[J]. Techno-Economics in Petrochemicals, 2019, 35(3):57-61. | |
[12] |
ZAKHAROVA E, MARTINEZ D I A, LEON S, et al. Sugar-based bicyclic monomers for aliphatic polyesters: a comparative appraisal of acetalized alditols and isosorbide[J]. Des Monomers Polym, 2017, 20(1):157-166.
doi: 10.1080/15685551.2016.1231038 |
[13] |
QI J, WU J, CHEN J, et al. An investigation of the thermal and (bio)degradability of PBS copolyesters based on isosorbide[J]. Polymer Degradation and Stability, 2019, 160:229-241.
doi: 10.1016/j.polymdegradstab.2018.12.031 |
[14] |
CHATTI S, WEIDNER S M, FILDIER A, et al. Copolyesters of isosorbide, succinic acid, and isophthalic acid: biodegradable, high Tg engineering plastics[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51(11):2464-2471.
doi: 10.1002/pola.v51.11 |
[15] |
CAOUTHAR A, ROGER P, TESSIER M, et al. Synjournal and characterization of new polyamides derived from di(4-cyanophenyl)isosorbide[J]. European Polymer Journal, 2007, 43(1):220-230.
doi: 10.1016/j.eurpolymj.2006.08.012 |
[16] |
QIAN W, LIU L, ZHANG Z, et al. Synjournal of bioderived polycarbonates with adjustable molecular weights catalyzed by phenolic-derived ionic liquids[J]. Green Chemistry, 2020, 22(8):2488-2497.
doi: 10.1039/D0GC00493F |
[17] |
SAXON D J, LUKE A M, SAJJAD H, et al. Next-generation polymers: isosorbide as a renewable alternative[J]. Progress in Polymer Science, 2020, 101:101196.
doi: 10.1016/j.progpolymsci.2019.101196 |
[18] |
FENOUILLOT F, ROUSSEAU A, COLOMINES G, et al. Polymers from renewable 1,4∶3,6-dianhydro-hexitols (isosorbide, isomannide and isoidide): a review[J]. Progress in Polymer Science, 2010, 35(5):578-622.
doi: 10.1016/j.progpolymsci.2009.10.001 |
[19] |
CECUTTI C, MOULOUNGUI Z, GASET A. Synjournal of new diesters of 1,4∶3,6-dianhydro-D-glucitol by esterification with fatty acid chlorides[J]. Bioresource Technology, 1998, 66(1):63-67.
doi: 10.1016/S0960-8524(97)00082-5 |
[20] |
MUÑOZ-GUERRA S, LAVILLA C, JAPU C, et al. Renewable terephthalate polyesters from carbohydrate-based bicyclic monomers[J]. Green Chem, 2014, 16(4):1716-1739.
doi: 10.1039/C3GC42394H |
[21] |
PARK H S, GONG M S, KNOWLES J C. Synjournal and biocompatibility properties of polyester containing various diacid based on isosorbide[J]. J Biomater Appl, 2012, 27(1):99-109.
doi: 10.1177/0885328212447245 |
[22] |
WU J, THIYAGARAJAN S, GUERRA C F, et al. Isohexide dinitriles: a versatile family of renewable platform chemicals[J]. ChemSusChem, 2017, 10(16):3202-3211.
doi: 10.1002/cssc.201700617 |
[23] |
YOON W J, OH K S, KOO J M, et al. Advanced polymerization and properties of biobased high Tg polyester of isosorbide and 1,4-cyclohexanedicarboxylic acid through in situ acetylation[J]. Macromolecules, 2013, 46(8):2930-2940.
doi: 10.1021/ma4001435 |
[24] | BRAUN D, BERGMANN M. 1,4∶3,6-dianhydrohexite als bausteine für polymere[J]. Advanced Synjournal & Catalysis, 1992, 334(4):298-310. |
[25] |
OKADA M, OKADA Y, AOI K. Synjournal and degradabilities of polyesters from 1,4∶3,6-dianhydrohexitols and aliphatic dicarboxylic acids[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1995, 33(16):2813-2820.
doi: 10.1002/pola.1995.080331615 |
[26] |
JUAIS D, NAVES A F, LI C, et al. Isosorbide polyesters from enzymatic catalysis[J]. Macromolecules, 2010, 43(24):10315-10319.
doi: 10.1021/ma1013176 |
[27] |
OKADA M, OKADA Y, TAO A, et al. Biodegradable polymers based on renewable resources: polyesters composed of 1,4∶3,6-dianhydrohexitol and aliphatic dicarboxylic acid units[J]. Journal of Applied Polymer Science, 1996, 62(13):2257-2265.
doi: 10.1002/(ISSN)1097-4628 |
[28] |
OKADA M, TSUNODA K, TACHIKAWA K, et al. Biodegradable polymers based on renewable resources: IV: enzymatic degradation of polyesters composed of 1,4∶3.6-dianhydro-D-glucitol and aliphatic dicarboxylic acid moieties[J]. Journal of Applied Polymer Science, 2000, 77(2):338-346.
doi: 10.1002/(ISSN)1097-4628 |
[29] | KUMAR A, GROSS R A. Candida antartica lipase B catalyzed polycaprolactone synjournal: effects of organic media and temperature[J]. Biomacromolecules, 2000(1):133-138. |
[30] |
XU J, GUO B H. Poly(butylene succinate) and its copolymers: research, development and industrializa-tion[J]. Biotechnology Journal, 2010, 5(11):1149-1163.
doi: 10.1002/biot.v5.11 |
[31] |
XU J, GUO B H. Poly(butylene succinate) and its copolymers: research, development and industrializa-tion[J]. Biotechnology Journal, 2010, 5(11):1149-1163.
doi: 10.1002/biot.v5.11 |
[32] | 段荣涛, 董雪, 李德福, 等. 含异山梨醇的全生物基PBS嵌段共聚酯的制备及性能[J]. 高分子学报, 2016(1):70-77. |
DUAN Rongtao, DONG Xue, LI Defu, et al. Preparation and properties of bio-based PBS multiblock copolyesters containing isosorbide units[J]. Acta Polymerica Sinica, 2016(1):70-77. | |
[33] | CARETTO A, PASSONI V, BRENNA N, et al. Fully biobased polyesters based on an isosorbide monomer for coil coating applications[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):14125-14134. |
[34] |
NOORDOVER B A J, VAN S V G, DUCHATEAU R, et al. Co- and terpolyesters based on isosorbide and succinic acid for coating applications: synjournal and characterization[J]. Biomacromolecules, 2006, 7(12):3406-3416.
doi: 10.1021/bm060713v |
[35] |
KANG H, LI M, TANG Z, et al. Synjournal and characterization of biobased isosorbide-containing copolyesters as shape memory polymers for biomedical applications[J]. J Mater Chem B, 2014, 2(45):7877-7886.
doi: 10.1039/C4TB01304B |
[36] | 郑宁来. 2020年世界PET产销情况[J]. 聚酯工业, 2017, 30(2):4. |
ZHENG Ninglai. World PET production and marketing in 2020[J]. Polyester Industry, 2017, 30(2):4. | |
[37] | GOHIL R M. Properties and strain hardening character of polyethylene terephthalate containing isosorbide[J]. Polymer Engineering and Science, 2009, 49(3):544-553. |
[38] |
DESCAMPS N, FERNANDEZ F, HEIJBOER P, et al. Isothermal crystallization kinetics of poly(ethylene terephthalate) copolymerized with various amounts of isosorbide[J]. Applied Sciences, 2020, 10(3):1046.
doi: 10.3390/app10031046 |
[39] |
LEE S Y, YANG D R, CHANG J W. Design of isosorbide crystallization process as recovery system for poly(ethylene-co-isosorbide) terephthalate production via solubility measurements and crystallization kinetic parameter estimation[J]. Journal of Industrial and Engineering Chemistry, 2020, 92:191-199.
doi: 10.1016/j.jiec.2020.09.004 |
[40] |
STANLEY N, CHENAL T, DELAUNAY T, et al. Bimetallic catalytic systems based on Sb, Ge and Ti for the synjournal of poly(ethylene terephthalate-co-isosorbide terephthalate)[J]. Polymers, 2017. DOI: 10.3390/polym9110590.
doi: 10.3390/polym9110590 |
[41] |
STANLEY N, CHENAL T, JACQUEL N, et al. Organocatalysts for the synjournal of poly(ethylene terephthalate-co-isosorbide terephthalate): a combined experimental and DFT study[J]. Macromolecular Materials and Engineering, 2019, 304(9) :1900298.
doi: 10.1002/mame.v304.9 |
[42] |
LI X G, SONG G, HUANG M R, et al. Cleaner synjournal and systematical characterization of sustainable poly(isosorbide-co-ethylene terephthalate) by environ-benign and highly active catalysts[J]. Journal of Cleaner Production, 2019, 206:483-497.
doi: 10.1016/j.jclepro.2018.09.046 |
[43] |
SABLONG R, DUCHATEAU R, KONING C E, et al. Incorporation of isosorbide into poly(butylene terephthalate) via solid-state polymerization[J]. Biomacromolecules, 2008, 9(11):3090-3097.
doi: 10.1021/bm800627d |
[44] |
KRICHELDORF H R, BEHNKEN G, SELL M. Influence of isosorbide on glass-transition temperature and crystallinity of poly(butylene terephthalate)[J]. Journal of Macromolecular Science Part A: Pure and Applied Chemistry, 2007, 44(7-9):679-684.
doi: 10.1080/10601320701351128 |
[45] | CHEN J, WU J, QI J, et al. Systematic study of thermal and (bio)degradable properties of semiaromatic copolyesters based on naturally occurring isosorbide[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1):1061. |
[46] |
KOO J M, HWANG S Y, YOON W J, et al. Structural and thermal properties of poly(1,4-cyclohexane dimethylene terephthalate) containing isosorbide[J]. Polymer Chemistry, 2015, 6(39):6973-6986.
doi: 10.1039/C5PY01152C |
[47] |
LEGRAND S, JACQUEL N, AMEDRO H, et al. Synjournal and properties of poly(1,4-cyclohexanedimethylene-co-isosorbide terephthalate), a biobased copolyester with high performances[J]. European Polymer Journal, 2019, 115:22-29.
doi: 10.1016/j.eurpolymj.2019.03.018 |
[48] |
YOON W J, HWANG S Y, KOO J M, et al. Synjournal and characteristics of a biobased high-Tg terpolyester of isosorbide, ethylene glycol, and 1,4-cyclohexane dimethanol: effect of ethylene glycol as a chain linker on polymerization[J]. Macromolecules, 2013, 46(18):7219-7231.
doi: 10.1021/ma4015092 |
[49] |
DUY-NAM P, LEE H, CHOI D, et al. Fabrication of two polyester nanofiber types containing the biobased monomer isosorbide: poly (ethylene glycol 1,4-cyclohexane dimethylene isosorbide terephthalate) and poly (1,4-cyclohexane dimethylene isosorbide terephthalate)[J]. Nanomaterials, 2018, 8(2):56.
doi: 10.3390/nano8020056 |
[50] |
LEE H, KOO J M, SOHN D, et al. High thermal stability and high tensile strength terpolyester nanofibers containing biobased monomer: fabrication and characterization[J]. RSC Advances, 2016, 6(46):40383-40388.
doi: 10.1039/C6RA02852G |
[51] | KHAN M Q, LEE H, KHATRI Z, et al. Fabrication and characterization of nanofibers of honey/poly(1,4-cyclohexane dimethylene isosorbide trephthalate) by electrospinning[J]. Materials Science & Engineering C:Materials for Biological Applications, 2017, 81:247-2451. |
[52] |
KHAN M Q, LEE H, KOO J M, et al. Self-cleaning effect of electrospun poly(1,4-cyclohexanedimethylene isosorbide terephthalate) nanofibers embedded with zinc oxide nanoparticles[J]. Textile Research Journal, 2018, 88(21):2493-2498.
doi: 10.1177/0040517517723026 |
[53] |
WANG X, WANG Q, LIU S, et al. Synjournal and properties of poly(isosorbide 2,5-furandicarboxylate-co- ε-caprolactone) copolyesters[J]. Polymer Testing, 2020, 81:106284.
doi: 10.1016/j.polymertesting.2019.106284 |
[54] |
KASMI N, MAJDOUB M, PAPAGEORGIOU G Z, et al. Synjournal and crystallization of new fully renewable resources-based copolyesters: poly(1,4-cyclohexanedimethanol-co-isosorbide 2,5-furandicar-boxylate)[J]. Polymer Degradation and Stability, 2018, 152:177-190.
doi: 10.1016/j.polymdegradstab.2018.04.009 |
[1] | LI Yanyan, LI Mengjuan, GE Mingqiao. Research progress on decolorization and recycling of colored polyester waste [J]. Journal of Textile Research, 2021, 42(08): 17-23. |
[2] | XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24. |
[3] | GU Weiwen, WANG Wenqing, WEI Lifei, SUN Chenying, HAO Dan, WEI Jianfei, WANG Rui. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate) [J]. Journal of Textile Research, 2021, 42(07): 1-10. |
[4] | LI Fengyan, YE Tianyu, ZHAN Xiaoqing, ZHAO Jian, LI Danyang, WANG Rui. Preparation and properties of puncture-resistant fabrics made from polyester and aramid or ultrahigh molecular weight polyethylene compound yarns [J]. Journal of Textile Research, 2021, 42(07): 82-88. |
[5] | ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109. |
[6] | GUAN Zhenyu, ZHOU Wenle, ZHANG Yumei, WANG Huaping. Kinetic study on synthesis of bottle polyester using Ti-Mg catalyst [J]. Journal of Textile Research, 2021, 42(03): 64-70. |
[7] | MENG Lingling, WEI Qufu, YAN Zhongjie, ZHONG Zhenzhen, WANG Xiaohui, SHEN Jiayu, CHEN Hongwei. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering [J]. Journal of Textile Research, 2021, 42(03): 143-148. |
[8] | HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester/silk woven heart valve [J]. Journal of Textile Research, 2021, 42(02): 74-79. |
[9] | JIN Linlin, TIAN Junkai, LI Jiawei, QI Dongming, SHEN Xiaowei, WU Chuntao. Synthesis and properties of biodegradable polyglycolic acid oligomer modified polyester [J]. Journal of Textile Research, 2021, 42(01): 16-21. |
[10] | SHAO Jingfeng, LI Ning, CAI Zaisheng. Parameters optimization on polyester drawn textured yarn based on fuzzy multi-criteria [J]. Journal of Textile Research, 2021, 42(01): 46-52. |
[11] | CHEN Kang, JIANG Quan, JI Hong, ZHANG Yang, SONG Minggen, ZHANG Yumei, WANG Huaping. Temperature related creep rupture mechanism of high-tenacity polyester industrial fiber [J]. Journal of Textile Research, 2020, 41(11): 1-9. |
[12] | WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121. |
[13] | CHEN Yong, WANG Jingjing, WANG Chaosheng, GU Donghua, WU Jing, WANG Huaping. Effect of oligomers on crystalline properties of polytrimethylene terephthalate [J]. Journal of Textile Research, 2020, 41(10): 1-6. |
[14] | LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107. |
[15] | DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87. |
|