Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (05): 185-194.doi: 10.13475/j.fzxb.20210301910
• Comprehensive Review • Previous Articles Next Articles
HAN Yijun1, XU Jun1(), CHANG Qiqi1, ZHANG Cheng2,3
CLC Number:
[1] |
MATHEW S, YELLA A, GAO P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nature Chemistry, 2014, 6(3): 242-247.
doi: 10.1038/nchem.1861 |
[2] |
SATHARASINGHE A, HUGHES-RILEY T, DIAS T. An investigation of a wash-durable solar energy harvesting textile[J]. Progress in Photovoltaics, 2020, 28(6): 578-592.
doi: 10.1002/pip.3229 |
[3] | 马廷丽, 云斯宁. 染料敏化太阳能电池从理论基础到技术应用[M]. 北京: 化学工业出版社, 2013: 19-32. |
MA Tingli, YUN Sining, Dye-sensitized solar cells: theoretical basis to technical application[M]. Beijing: Chemical Industry Press, 2013: 19-32. | |
[4] |
TSUBOMURA H, MATSUMURA M, NOMURA Y, et al. Dye-sensitized zinc oxide: aqueous electrolyte: platinum photocell[J]. Nature, 1976, 261(5559): 402-403.
doi: 10.1038/261402a0 |
[5] |
GRÄTZEL B O R M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(353): 737-740.
doi: 10.1038/353737a0 |
[6] | Alliance for Sustainable Energy, LLC. Best research-cell efficiencies: emerging photovoltaics[EB/OL].[2020-09-23]. . |
[7] | HASHEMI S A, RAMAKRISHNA S, ABERLE A G. Recent progress in flexible-wearable solar cells for self-powered electronic devices[J]. Energy & Environmental Science, 2020, 13(3): 685-743. |
[8] |
SHARMA K, SHARMA V, SHARMA S S. Dye-sensitized solar cells: fundamentals and current status[J]. Nanoscale Research Letters, 2018, 13(1): 381.
doi: 10.1186/s11671-018-2760-6 |
[9] | GONG J W, SUMATHY K, QIAO Q Q, et al. Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends[J]. Renewable & Sustainable Energy Reviews, 2017, 68(1): 234-246. |
[10] |
KOPIDAKIS N, NEALE N R, ZHU K, et al. Spatial location of transport-limiting traps in TiO2 nanoparticle films in dye-sensitized solar cells[J]. Applied Physics Letters, 2005, 87(20): 202106.
doi: 10.1063/1.2130723 |
[11] | MEYER T. Dye solar cells for real:the assembly guide for making your own solar cells[EB/OL].[2012-03-04]. |
[12] | 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165. |
WANG Jilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41(12): 157-165. | |
[13] |
LV Z B, FU Y P, HOU S C, et al. Large size, high efficiency fiber-shaped dye-sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2011, 13(21): 10076-10083.
doi: 10.1039/c1cp20543a |
[14] |
GAO Z, LIU P, FU X M, et al. Flexible self-powered textile formed by bridging photoactive and electrochemically active fiber electrodes[J]. Journal of Materials Chemistry A, 2019, 7(24): 14447-14454.
doi: 10.1039/C9TA04178H |
[15] |
GRISSOM G, JAKSIK J, MCENTEE M, et al. Three-dimensional carbon nanotube yarn based solid state solar cells with multiple sensitizers exhibit high energy conversion efficiency[J]. Solar Energy, 2018, 171(1): 16-22.
doi: 10.1016/j.solener.2018.06.053 |
[16] | 贺倩, 宋立新, 曹厚宝, 等. ZnO/TiO2皮芯厚度比对染料敏化太阳电池性能的影响[J]. 纺织学报, 2014, 35(10): 1-6. |
HE Qian, SONG Lixin, CAO Houbao, et al. Effect of ZnO/TiO2 core-sheath thickness ratios on performance of dye sensitized solar cells[J]. Journal of Textile Research, 2014, 35(10): 1-6.
doi: 10.1177/004051756503500101 |
|
[17] |
CHAE Y, PARK J T, KOH J K, et al. All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel wires[J]. Materials Science and Engineering B: Advanced Functional Solid-State Materials, 2013, 178(17): 1117-1123.
doi: 10.1016/j.mseb.2013.06.018 |
[18] |
CAI F J, CHEN T, PENG H S. All carbon nanotube fiber electrode-based dye-sensitized photovoltaic wire[J]. Journal of Materials Chemistry, 2012, 22(30): 14856-14860.
doi: 10.1039/c2jm32256k |
[19] |
CHEN T, QIU L B, CAI Z B, et al. Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells[J]. Nano Letters, 2012, 12(5): 2568-2572.
doi: 10.1021/nl300799d |
[20] |
YANG Z B, DENG J, SUN X M, et al. Stretchable, wearable dye-sensitized solar cells[J]. Advanced Materials, 2014, 26(17): 2643-2647.
doi: 10.1002/adma.201400152 |
[21] |
HOU S C, LV Z B, WU H W, et al. Flexible conductive threads for wearable dye-sensitized solar cells[J]. Journal of Materials Chemistry, 2012, 22(14): 6549-6552.
doi: 10.1039/c2jm16773e |
[22] | 孙悦, 范杰, 王亮, 等. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12): 131-138. |
SUN Yue, FAN Jie, WANG Liang, et al. Research progress of wearable technology in textiles and apparels[J]. Journal of Textile Research, 2018, 39(12): 131-138. | |
[23] | 李明, 田明伟, 王冰心, 等. 纺织基柔性锌离子电池研究进展[J]. 棉纺织技术, 2021, 49(1): 17-22. |
LI Ming, TIAN Mingwei, WANG Bingxin, et al. Research progress of textile-based flexible zinc-ion battery[J]. Cotton Textile Technology, 2021, 49(1): 17-22. | |
[24] | OPWIS K, GUTMANN J S, ALONSO A R L, et al. Preparation of a textile-based dye-sensitized solar cell[J]. International Journal of Photoenergy, 2016, 2016(1): 1-11. |
[25] |
JUNGER I J, HOMBURG S V, GRETHE T, et al. Examination of the sintering process-dependent properties of TiO2 on glass and textile substrates[J]. Journal of Photonics for Energy, 2017, 7(1): 15001.
doi: 10.1117/1.JPE.7.015001 |
[26] |
LIU J, LI Y, ARUMUGAM S, et al. Screen printed dye-sensitized solar cells (DSSCs) on woven polyester cotton fabric for wearable energy harvesting applications[J]. Materials Today: Proceedings, 2018, 5(5): 13753-13758.
doi: 10.1016/j.matpr.2018.02.015 |
[27] |
LIU J Q, LI Y, LI M L, et al. Processing of printed dye sensitized solar cells on woven textiles[J]. Ieee Journal of Photovoltaics, 2019, 9(4): 1020-1024.
doi: 10.1109/JPHOTOV.2019.2899432 |
[28] |
KAKIAGE K, FUJIMURA E, ABE M, et al. Application of micro-metal textile for flexible dye-sensitized solar cell[J]. key Engineering Materials, 2011, 459: 92-99.
doi: 10.4028/www.scientific.net/KEM.459.92 |
[29] |
YUN M J, CHA S I, SEO S H, et al. Insertion of dye-sensitized solar cells in textiles using a conventional weaving process[J]. Scientific Reports, 2015, 5: 11022.
doi: 10.1038/srep11022 |
[30] |
YUN M J, CHA S I, SEO S H, et al. Float printing deposition to control the morphology of TiO2 photoanodes on woven textile metal substrates for TCO-free flexible dye-sensitized solar cells[J]. Rsc Advances, 2016, 6(71): 67331-67339.
doi: 10.1039/C6RA09457K |
[31] |
YUN M J, CHA S I, SEO S H, et al. Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth[J]. Scientific Reports, 2014, 4(1): 5322.
doi: 10.1038/srep05322 |
[32] |
SAHITO I A, SUN K C, ARBAB A A, et al. Graphene coated cotton fabric as textile structured counter electrode for DSSC[J]. Electrochimica Acta, 2015, 173: 164-171.
doi: 10.1016/j.electacta.2015.05.035 |
[33] |
ARBAB A A, SUN K C, SAHITO I A, et al. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell[J]. Physical Chemistry Chemical Physics, 2015, 17(19): 12957-12969.
doi: 10.1039/C5CP00818B |
[34] |
ARBAB A A, SUN K C, SAHITO I A, et al. Fabrication of textile fabric counter electrodes using activated charcoal doped multi walled carbon nanotube hybrids for dye sensitized solar cells[J]. Journal of Materials Chemistry A, 2016, 4(4): 1495-1505.
doi: 10.1039/C5TA08858E |
[35] |
MEMON A A, ARBAB A A, SAHITO I A, et al. Synthesis of highly photo-catalytic and electro-catalytic active textile structured carbon electrode and its application in DSSCs[J]. Solar Energy, 2017, 150(25): 521-531.
doi: 10.1016/j.solener.2017.04.052 |
[36] |
MENGAL N, ARBAB A A, SAHITO I A, et al. An electrocatalytic active lyocell fabric cathode based on cationically functionalized and charcoal decorated graphite composite for quasi-solid state dye sensitized solar cell[J]. Solar Energy, 2017, 155(1): 110-120.
doi: 10.1016/j.solener.2017.06.032 |
[37] |
SAHITO I A, SUN K C, ARBAB A A, et al. Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell[J]. Journal of Power Sources, 2016, 319: 90-98.
doi: 10.1016/j.jpowsour.2016.04.025 |
[38] |
MULLER S, WIESCHOLLEK D, JUNGER I J, et al. Back electrodes of dye-sensitized solar cells on textile fabrics[J]. Optik, 2019, 198: 163243.
doi: 10.1016/j.ijleo.2019.163243 |
[39] |
TSAI M H, WANG C L, HE Z H, et al. Achieving a superior electrocatalytic activity of carbon cloth via atomic layer deposition as a flexible counter electrode for efficient dye-sensitized solar cells[J]. Journal of Power Sources, 2020, 458: 228043.
doi: 10.1016/j.jpowsour.2020.228043 |
[40] |
XU Q, LI M X, YAN P, et al. Polypyrrole-coated cotton fabrics prepared by electrochemical polymerization as textile counter electrode for dye-sensitized solar cells[J]. Organic Electronics, 2016, 29: 107-113.
doi: 10.1016/j.orgel.2015.11.007 |
[41] |
MOTLAGH M S, MOTTAGHITALAB V. The charge transport characterization of the polyaniline coated carbon fabric as a novel textile based counter electrode for flexible dye-sensitized solar cell[J]. Electrochimica Acta, 2017, 249: 308-317.
doi: 10.1016/j.electacta.2017.08.032 |
[42] |
JUNGER I J, WEHLAGE D, BOTTJER R, et al. Dye-sensitized solar cells with electrospun nanofiber mat-based counter electrodes[J]. Materials, 2018, 11(9): 1604.
doi: 10.3390/ma11091604 |
[43] |
MILLINGTON K R, FINCHER K W, KING A L. Mordant dyes as sensitisers in dye-sensitised solar cells[J]. Solar Energy Materials and Solar Cells, 2007, 91(17): 1618-1630.
doi: 10.1016/j.solmat.2007.05.020 |
[44] | ABDOU E M, HAFEZ H S, BAKIR E, et al. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2013, 115: 202-207. |
[45] |
PATHAN H M, INAMDAR Y A, SHAIKH A V, et al. ZnO photoelectrode for textile dye (reactive blue 59) sensitized solar cell[J]. Advanced Science Letters, 2014, 20(5/6): 1155-1158.
doi: 10.1166/asl.2014.5443 |
[46] |
CHAE Y, KIM S J, KIM J H, et al. Metal-free organic-dye-based flexible dye-sensitized solar textiles with panchromatic effect[J]. Dyes and Pigments, 2015, 113: 378-389.
doi: 10.1016/j.dyepig.2014.09.004 |
[47] |
YADAV V, CHAUDHARY S, NEGI C M S, et al. Textile dyes as photo-sensitizer in the dye sensitized solar cells[J]. Optical Materials, 2020, 109: 110306.
doi: 10.1016/j.optmat.2020.110306 |
[48] | KIM J H, KOO S J, CHO H, et al. 6.16% Efficiency of solid-state fiber dye-sensitized solar cells based on LiTFSI electrolytes with novel TEMPOL derivatives[J]. Acs Sustainable Chemistry & Engineering, 2020, 8(40): 15065-15071. |
[1] | GU Zhanghong, YAO Xiang, WANG Jinsi, ZHANG Yaopeng. Preparation and properties of single-layer and parallel silk fibroin fiber patterns with cell adhesion contrast properties [J]. Journal of Textile Research, 2022, 43(05): 1-6. |
[2] | MU Yifei, JIN Zimin, YAN Yuxiu, WU Dehao, ZHOU Wenlong, TAO Jianwei. Effect of far infrared polyamide fabrics on proliferation of breast cancer cells [J]. Journal of Textile Research, 2022, 43(05): 109-115. |
[3] | CHEN Peng, LIAO Shihao, SHEN Lanping, WANG Xuan, WANG Peng. Dyeing properties of polylactic acid/polyketone fibers with disperse dye [J]. Journal of Textile Research, 2022, 43(05): 12-17. |
[4] | LIU Suo, WANG Yaqian, WEI Anfang, ZHAO Lei, FENG Quan. Preparation of functional spunlaced viscose fiber membrane and its application for laccase immobilization [J]. Journal of Textile Research, 2022, 43(05): 124-129. |
[5] | CUI Yulian, LIU Hong. Research on formation mechanisms of textile fibers microplastic during laundering [J]. Journal of Textile Research, 2022, 43(05): 195-201. |
[6] | FAN Wei, LIU Hongxia, LU Linlin, DOU Hao, SUN Yanli. Progress in recycling waste natural fiber textiles and high-value utilization strategy [J]. Journal of Textile Research, 2022, 43(05): 49-56. |
[7] | ZHAO Bobo, WANG Liang, LI Jingyu, WAN Gang, XIA Zhaopeng, LIU Yong. Preparation and properties of hexamethylenetetramine cross-linked phenolic fibers [J]. Journal of Textile Research, 2022, 43(05): 57-62. |
[8] | CHEN Feng, JI Zhongli, YU Wenhan, DONG Wuqiang, WANG Qianlin, WANG Deguo. Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters [J]. Journal of Textile Research, 2022, 43(05): 63-69. |
[9] | CHEN Mingjun, LI Haoyi, YANG Weimin. Physical model and effects of electric field on jets in polymer melt differential electrospinning [J]. Journal of Textile Research, 2022, 43(05): 70-76. |
[10] | YANG Ke, YAN Jun, XIAO Yong, XU Jing, CHEN Lei, LIU Yong. Preparation of MnOx/carbon nanofiber membrane free-standing cathodes for zinc ion battery based on electrochemical deposition and their electrochemical characteristics [J]. Journal of Textile Research, 2022, 43(05): 77-85. |
[11] | YU Pengju, WANG Lili, ZHANG Wenqi, LIU Yang, LI Wenbin. Effect of moisture regain on strength of quartz yarns before and after weaving [J]. Journal of Textile Research, 2022, 43(05): 92-96. |
[12] | SUN Chunhong, DING Guangtai, FANG Kun. Cashmere and wool classification based on sparse dictionary learning [J]. Journal of Textile Research, 2022, 43(04): 28-32. |
[13] | YU Yan, WANG Xichao, ZHANG Ruiyun, LI Rongli, CHENG Longdi. Structure and performances of Yunnan wild fireweed fiber and its fibrous network [J]. Journal of Textile Research, 2022, 43(04): 10-14. |
[14] | SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites [J]. Journal of Textile Research, 2022, 43(04): 68-73. |
[15] | LI Xingxing, LI Qin, YUE Tiantian, LIU Yuqing. Progress in microfluidics preparation technology of micro/nano cellulose materials [J]. Journal of Textile Research, 2022, 43(04): 180-186. |
|