Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (05): 185-194.doi: 10.13475/j.fzxb.20210301910

• Comprehensive Review • Previous Articles     Next Articles

Research progress in textile-based flexible dye-sensitized solar cells

HAN Yijun1, XU Jun1(), CHANG Qiqi1, ZHANG Cheng2,3   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China
    3. Tianjin Key Laboratory of Optoelectronic Detection Technology and System, Tianjin 300387, China
  • Received:2021-03-04 Revised:2021-09-08 Online:2022-05-15 Published:2022-05-30
  • Contact: XU Jun E-mail:msdrxujun@163.com

Abstract:

Solar energy is one of the effective solutions for the energy problem. Flexible solar cells can solve the power supply problem for wearable devices, and at the same time can facilitate the integration with clothing. In order to comprehensively explore the application prospects of textile-based flexible dye-sensitized solar cells, the development status, composition structure, working mechanism and performance evaluation of dye-sensitized solar cells were reviewed, focusing on the research results of flexible fibrous batteries and textile-based planar batteries, and on analysis of the characteristics of electrode preparation and battery assembly methods. The review also pointed out the unresolved problems in the textile field, and also summarized the development process in textile-based flexible dye-sensitized solar cell electrolytes and sensitizing dyes. It is concluded that the prospect of the development of textile-based flexible dye-sensitized solar cells was put forward.

Key words: dye-sensitized solar cells, textile-based, electrode material, fabric coating, fiber

CLC Number: 

  • TM914.4

Fig.1

Schematic diagram of tranprarent structure of DSSCs. (a) Fount tranprarent; (b) Back tranprarent"

Fig.2

Schematic diagram of structure of fibrous DSSCs"

Fig.3

Schematic diagram of structure and working principle and electron transfer process of "TiO2-I-/ I 3 --Pt" DSSCs"

Tab.1

Summary of photovoltaic parameters of flexible fibrous dye-sensitized solar cells"

电池形态 电池材料组成 电极材料
制备方法
短路电流/
(mA·cm-2)
开路电
压/V
影响因
F
光电转化
效率/%
参考
文献
线状 钛丝/TiO2/N719/I-- I 3 -/铂丝 涂覆法 11.06 0.734 0.672 5.41 [13]
碳纳米管丝/TiO2/N719/I-- I 3 -/碳纳米管丝 化学浴沉积法 7.6 [15]
碳纳米管丝/N719/I-- I 3 -/碳纳米管/聚偏氟乙烯丝 化学气相沉积法 9.84 0.69 0.57 3.90 [18]
碳纳米管丝/TiO2/N719/I-- I 3 -/碳纳米管丝 涂覆法 2.94 [19]
网状 钛丝/TiO2/N719/I-- I 3 -/多壁碳纳米管丝 化学气相沉积法 16.0 0.71 0.61 7.13 [20]
缎纹网状 不锈钢丝/ZnO/N719/固体电解质/Pt/不锈钢丝 水热合成法 20.2 0.45 0.28 2.57 [17]

Tab.2

Summary of photovoltaic parameters of dye-sensitized solar cells on flexible fabric substrates"

电池形态 电池材料组成 电极材料
制备方法
短路电流/
(mA·cm-2)
开路电
压/V
影响因
子FF
光电转化
效率/%
参考
文献
全柔平面 玻璃纤维织物/PA层/Ti/TiO2/染料/电解质/聚萘二甲酸乙二醇酯/Pt/ITO 丝网印刷高温烧结 5.7 0.71 0.541 1.8 [24]
机织涤纶/棉(65/35)面料/导电银浆/Ruthenizer 535-bisTBA染料敏化剂/I-- I 3 -/石墨/ITO 丝网印刷低温工艺 9.6 0.67 0.50 3.24 [27]
玻璃纤维织物/导电银浆/TiO2/Ruthenizer 535-bisTBA染料敏化剂/I-- I 3 -/石墨/ITO 丝网印刷低温工艺 10.24 0.73 0.54 4.04 [27]
镀锡铜丝制成的金属微丝纺织品/TiO2/N3/I-- I 3 -/Pt/聚乙烯薄膜 涂覆法高温烧结 0.84 0.41 0.57 0.20 [28]
不锈钢(SUS304)金属织物/TiO2/N719/I-- I 3 -/Pt/活性碳粉/不锈钢金属网 丝网印刷热处理 2.63 [29]
不锈钢(SUS304)金属织物/TiO2/N719/I-- I 3 -/Pt/活性碳粉/不锈钢金属网 浮动印刷热处理 6.32 0.792 0.67 4.16 [30]
304不锈钢网/TiO2/N719/ I-- I 3 -/Pt/不锈钢网/丝绸 电镀沉积 19.70 0.69 0.43 5.8 [31]
半柔平面 标准涤纶/棉(65/35)织物/导电银浆/TiO2/N719/I-- I 3 -/Pt/FTO 丝网印刷低温工艺 36.56 0.3 0.25 2.78 [26]
纸质基材/Ni/ZnO/N719/I-- I 3 -/Pt/FTO 刮涂法 6.70 0.56 0.33 1.21 [33]
FTO/TiO2/N719/I-- I 3 -/氧化石墨烯/棉织物 涂覆法 9.08 0.64 0.429 7 2.52 [32]
FTO/TiO2/D719/I-- I 3 -/多壁碳纳米管涂层/涤纶织物 流延法空气干燥 11.92 0.688 0.693 9 5.69 [33]
FTO/TiO2/N719/I-- I 3 -/活性炭掺杂多壁碳纳米管/涤纶机织物 刮涂法空气干燥 12.03 0.766 0.790 3 7.29 [34]
FTO/TiO2/N719/凝胶电解质/多壁碳纳米管/介孔活性炭/棉织物 刮涂法 12.3 0.72 0.685 6.06 [35]
FTO/TiO2/N719/凝胶电解质/多壁碳纳米管/介孔活性炭/涤纶织物 刮涂法 12.4 0.72 0.701 9 6.26 [35]
FTO/TiO2/N719/凝胶电解质/多壁碳纳米管/介孔活性炭/亚麻面料 刮涂法 12.7 0.73 0.626 2 5.80 [35]
FTO/TiO2/N719/I-- I 3 -/活性炭/石墨烯/莱赛尔织物/聚对苯二甲酸乙二醇酯 涂覆法 15.5 0.73 0.628 7.09 [36]
FTO/TiO2/N719/I-- I 3 -/聚吡咯/镀镍织物 涂覆法 7.85 0.74 0.66 3.83 [40]
FTO/TiO2/N719/I-- I 3 -/聚苯胺/碳纤维织物 涂覆法 12.1 0.675 0.47 3.81 [41]
硬质平面 FTO/ TiO2/Dye/I-- I 3 -/石墨烯/棉织物/FTO 涂覆法 14.75 0.66 0.709 2 6.93 [37]
FTO/ZnO/N719/I-- I 3 -/活性炭布/FTO 原子沉积 14.03 0.7499 0.655 6.88 [39]
[1] MATHEW S, YELLA A, GAO P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nature Chemistry, 2014, 6(3): 242-247.
doi: 10.1038/nchem.1861
[2] SATHARASINGHE A, HUGHES-RILEY T, DIAS T. An investigation of a wash-durable solar energy harvesting textile[J]. Progress in Photovoltaics, 2020, 28(6): 578-592.
doi: 10.1002/pip.3229
[3] 马廷丽, 云斯宁. 染料敏化太阳能电池从理论基础到技术应用[M]. 北京: 化学工业出版社, 2013: 19-32.
MA Tingli, YUN Sining, Dye-sensitized solar cells: theoretical basis to technical application[M]. Beijing: Chemical Industry Press, 2013: 19-32.
[4] TSUBOMURA H, MATSUMURA M, NOMURA Y, et al. Dye-sensitized zinc oxide: aqueous electrolyte: platinum photocell[J]. Nature, 1976, 261(5559): 402-403.
doi: 10.1038/261402a0
[5] GRÄTZEL B O R M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(353): 737-740.
doi: 10.1038/353737a0
[6] Alliance for Sustainable Energy, LLC. Best research-cell efficiencies: emerging photovoltaics[EB/OL].[2020-09-23]. .
[7] HASHEMI S A, RAMAKRISHNA S, ABERLE A G. Recent progress in flexible-wearable solar cells for self-powered electronic devices[J]. Energy & Environmental Science, 2020, 13(3): 685-743.
[8] SHARMA K, SHARMA V, SHARMA S S. Dye-sensitized solar cells: fundamentals and current status[J]. Nanoscale Research Letters, 2018, 13(1): 381.
doi: 10.1186/s11671-018-2760-6
[9] GONG J W, SUMATHY K, QIAO Q Q, et al. Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends[J]. Renewable & Sustainable Energy Reviews, 2017, 68(1): 234-246.
[10] KOPIDAKIS N, NEALE N R, ZHU K, et al. Spatial location of transport-limiting traps in TiO2 nanoparticle films in dye-sensitized solar cells[J]. Applied Physics Letters, 2005, 87(20): 202106.
doi: 10.1063/1.2130723
[11] MEYER T. Dye solar cells for real:the assembly guide for making your own solar cells[EB/OL].[2012-03-04].
[12] 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165.
WANG Jilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41(12): 157-165.
[13] LV Z B, FU Y P, HOU S C, et al. Large size, high efficiency fiber-shaped dye-sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2011, 13(21): 10076-10083.
doi: 10.1039/c1cp20543a
[14] GAO Z, LIU P, FU X M, et al. Flexible self-powered textile formed by bridging photoactive and electrochemically active fiber electrodes[J]. Journal of Materials Chemistry A, 2019, 7(24): 14447-14454.
doi: 10.1039/C9TA04178H
[15] GRISSOM G, JAKSIK J, MCENTEE M, et al. Three-dimensional carbon nanotube yarn based solid state solar cells with multiple sensitizers exhibit high energy conversion efficiency[J]. Solar Energy, 2018, 171(1): 16-22.
doi: 10.1016/j.solener.2018.06.053
[16] 贺倩, 宋立新, 曹厚宝, 等. ZnO/TiO2皮芯厚度比对染料敏化太阳电池性能的影响[J]. 纺织学报, 2014, 35(10): 1-6.
HE Qian, SONG Lixin, CAO Houbao, et al. Effect of ZnO/TiO2 core-sheath thickness ratios on performance of dye sensitized solar cells[J]. Journal of Textile Research, 2014, 35(10): 1-6.
doi: 10.1177/004051756503500101
[17] CHAE Y, PARK J T, KOH J K, et al. All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel wires[J]. Materials Science and Engineering B: Advanced Functional Solid-State Materials, 2013, 178(17): 1117-1123.
doi: 10.1016/j.mseb.2013.06.018
[18] CAI F J, CHEN T, PENG H S. All carbon nanotube fiber electrode-based dye-sensitized photovoltaic wire[J]. Journal of Materials Chemistry, 2012, 22(30): 14856-14860.
doi: 10.1039/c2jm32256k
[19] CHEN T, QIU L B, CAI Z B, et al. Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells[J]. Nano Letters, 2012, 12(5): 2568-2572.
doi: 10.1021/nl300799d
[20] YANG Z B, DENG J, SUN X M, et al. Stretchable, wearable dye-sensitized solar cells[J]. Advanced Materials, 2014, 26(17): 2643-2647.
doi: 10.1002/adma.201400152
[21] HOU S C, LV Z B, WU H W, et al. Flexible conductive threads for wearable dye-sensitized solar cells[J]. Journal of Materials Chemistry, 2012, 22(14): 6549-6552.
doi: 10.1039/c2jm16773e
[22] 孙悦, 范杰, 王亮, 等. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12): 131-138.
SUN Yue, FAN Jie, WANG Liang, et al. Research progress of wearable technology in textiles and apparels[J]. Journal of Textile Research, 2018, 39(12): 131-138.
[23] 李明, 田明伟, 王冰心, 等. 纺织基柔性锌离子电池研究进展[J]. 棉纺织技术, 2021, 49(1): 17-22.
LI Ming, TIAN Mingwei, WANG Bingxin, et al. Research progress of textile-based flexible zinc-ion battery[J]. Cotton Textile Technology, 2021, 49(1): 17-22.
[24] OPWIS K, GUTMANN J S, ALONSO A R L, et al. Preparation of a textile-based dye-sensitized solar cell[J]. International Journal of Photoenergy, 2016, 2016(1): 1-11.
[25] JUNGER I J, HOMBURG S V, GRETHE T, et al. Examination of the sintering process-dependent properties of TiO2 on glass and textile substrates[J]. Journal of Photonics for Energy, 2017, 7(1): 15001.
doi: 10.1117/1.JPE.7.015001
[26] LIU J, LI Y, ARUMUGAM S, et al. Screen printed dye-sensitized solar cells (DSSCs) on woven polyester cotton fabric for wearable energy harvesting applications[J]. Materials Today: Proceedings, 2018, 5(5): 13753-13758.
doi: 10.1016/j.matpr.2018.02.015
[27] LIU J Q, LI Y, LI M L, et al. Processing of printed dye sensitized solar cells on woven textiles[J]. Ieee Journal of Photovoltaics, 2019, 9(4): 1020-1024.
doi: 10.1109/JPHOTOV.2019.2899432
[28] KAKIAGE K, FUJIMURA E, ABE M, et al. Application of micro-metal textile for flexible dye-sensitized solar cell[J]. key Engineering Materials, 2011, 459: 92-99.
doi: 10.4028/www.scientific.net/KEM.459.92
[29] YUN M J, CHA S I, SEO S H, et al. Insertion of dye-sensitized solar cells in textiles using a conventional weaving process[J]. Scientific Reports, 2015, 5: 11022.
doi: 10.1038/srep11022
[30] YUN M J, CHA S I, SEO S H, et al. Float printing deposition to control the morphology of TiO2 photoanodes on woven textile metal substrates for TCO-free flexible dye-sensitized solar cells[J]. Rsc Advances, 2016, 6(71): 67331-67339.
doi: 10.1039/C6RA09457K
[31] YUN M J, CHA S I, SEO S H, et al. Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth[J]. Scientific Reports, 2014, 4(1): 5322.
doi: 10.1038/srep05322
[32] SAHITO I A, SUN K C, ARBAB A A, et al. Graphene coated cotton fabric as textile structured counter electrode for DSSC[J]. Electrochimica Acta, 2015, 173: 164-171.
doi: 10.1016/j.electacta.2015.05.035
[33] ARBAB A A, SUN K C, SAHITO I A, et al. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell[J]. Physical Chemistry Chemical Physics, 2015, 17(19): 12957-12969.
doi: 10.1039/C5CP00818B
[34] ARBAB A A, SUN K C, SAHITO I A, et al. Fabrication of textile fabric counter electrodes using activated charcoal doped multi walled carbon nanotube hybrids for dye sensitized solar cells[J]. Journal of Materials Chemistry A, 2016, 4(4): 1495-1505.
doi: 10.1039/C5TA08858E
[35] MEMON A A, ARBAB A A, SAHITO I A, et al. Synthesis of highly photo-catalytic and electro-catalytic active textile structured carbon electrode and its application in DSSCs[J]. Solar Energy, 2017, 150(25): 521-531.
doi: 10.1016/j.solener.2017.04.052
[36] MENGAL N, ARBAB A A, SAHITO I A, et al. An electrocatalytic active lyocell fabric cathode based on cationically functionalized and charcoal decorated graphite composite for quasi-solid state dye sensitized solar cell[J]. Solar Energy, 2017, 155(1): 110-120.
doi: 10.1016/j.solener.2017.06.032
[37] SAHITO I A, SUN K C, ARBAB A A, et al. Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell[J]. Journal of Power Sources, 2016, 319: 90-98.
doi: 10.1016/j.jpowsour.2016.04.025
[38] MULLER S, WIESCHOLLEK D, JUNGER I J, et al. Back electrodes of dye-sensitized solar cells on textile fabrics[J]. Optik, 2019, 198: 163243.
doi: 10.1016/j.ijleo.2019.163243
[39] TSAI M H, WANG C L, HE Z H, et al. Achieving a superior electrocatalytic activity of carbon cloth via atomic layer deposition as a flexible counter electrode for efficient dye-sensitized solar cells[J]. Journal of Power Sources, 2020, 458: 228043.
doi: 10.1016/j.jpowsour.2020.228043
[40] XU Q, LI M X, YAN P, et al. Polypyrrole-coated cotton fabrics prepared by electrochemical polymerization as textile counter electrode for dye-sensitized solar cells[J]. Organic Electronics, 2016, 29: 107-113.
doi: 10.1016/j.orgel.2015.11.007
[41] MOTLAGH M S, MOTTAGHITALAB V. The charge transport characterization of the polyaniline coated carbon fabric as a novel textile based counter electrode for flexible dye-sensitized solar cell[J]. Electrochimica Acta, 2017, 249: 308-317.
doi: 10.1016/j.electacta.2017.08.032
[42] JUNGER I J, WEHLAGE D, BOTTJER R, et al. Dye-sensitized solar cells with electrospun nanofiber mat-based counter electrodes[J]. Materials, 2018, 11(9): 1604.
doi: 10.3390/ma11091604
[43] MILLINGTON K R, FINCHER K W, KING A L. Mordant dyes as sensitisers in dye-sensitised solar cells[J]. Solar Energy Materials and Solar Cells, 2007, 91(17): 1618-1630.
doi: 10.1016/j.solmat.2007.05.020
[44] ABDOU E M, HAFEZ H S, BAKIR E, et al. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2013, 115: 202-207.
[45] PATHAN H M, INAMDAR Y A, SHAIKH A V, et al. ZnO photoelectrode for textile dye (reactive blue 59) sensitized solar cell[J]. Advanced Science Letters, 2014, 20(5/6): 1155-1158.
doi: 10.1166/asl.2014.5443
[46] CHAE Y, KIM S J, KIM J H, et al. Metal-free organic-dye-based flexible dye-sensitized solar textiles with panchromatic effect[J]. Dyes and Pigments, 2015, 113: 378-389.
doi: 10.1016/j.dyepig.2014.09.004
[47] YADAV V, CHAUDHARY S, NEGI C M S, et al. Textile dyes as photo-sensitizer in the dye sensitized solar cells[J]. Optical Materials, 2020, 109: 110306.
doi: 10.1016/j.optmat.2020.110306
[48] KIM J H, KOO S J, CHO H, et al. 6.16% Efficiency of solid-state fiber dye-sensitized solar cells based on LiTFSI electrolytes with novel TEMPOL derivatives[J]. Acs Sustainable Chemistry & Engineering, 2020, 8(40): 15065-15071.
[1] GU Zhanghong, YAO Xiang, WANG Jinsi, ZHANG Yaopeng. Preparation and properties of single-layer and parallel silk fibroin fiber patterns with cell adhesion contrast properties [J]. Journal of Textile Research, 2022, 43(05): 1-6.
[2] MU Yifei, JIN Zimin, YAN Yuxiu, WU Dehao, ZHOU Wenlong, TAO Jianwei. Effect of far infrared polyamide fabrics on proliferation of breast cancer cells [J]. Journal of Textile Research, 2022, 43(05): 109-115.
[3] CHEN Peng, LIAO Shihao, SHEN Lanping, WANG Xuan, WANG Peng. Dyeing properties of polylactic acid/polyketone fibers with disperse dye [J]. Journal of Textile Research, 2022, 43(05): 12-17.
[4] LIU Suo, WANG Yaqian, WEI Anfang, ZHAO Lei, FENG Quan. Preparation of functional spunlaced viscose fiber membrane and its application for laccase immobilization [J]. Journal of Textile Research, 2022, 43(05): 124-129.
[5] CUI Yulian, LIU Hong. Research on formation mechanisms of textile fibers microplastic during laundering [J]. Journal of Textile Research, 2022, 43(05): 195-201.
[6] FAN Wei, LIU Hongxia, LU Linlin, DOU Hao, SUN Yanli. Progress in recycling waste natural fiber textiles and high-value utilization strategy [J]. Journal of Textile Research, 2022, 43(05): 49-56.
[7] ZHAO Bobo, WANG Liang, LI Jingyu, WAN Gang, XIA Zhaopeng, LIU Yong. Preparation and properties of hexamethylenetetramine cross-linked phenolic fibers [J]. Journal of Textile Research, 2022, 43(05): 57-62.
[8] CHEN Feng, JI Zhongli, YU Wenhan, DONG Wuqiang, WANG Qianlin, WANG Deguo. Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters [J]. Journal of Textile Research, 2022, 43(05): 63-69.
[9] CHEN Mingjun, LI Haoyi, YANG Weimin. Physical model and effects of electric field on jets in polymer melt differential electrospinning [J]. Journal of Textile Research, 2022, 43(05): 70-76.
[10] YANG Ke, YAN Jun, XIAO Yong, XU Jing, CHEN Lei, LIU Yong. Preparation of MnOx/carbon nanofiber membrane free-standing cathodes for zinc ion battery based on electrochemical deposition and their electrochemical characteristics [J]. Journal of Textile Research, 2022, 43(05): 77-85.
[11] YU Pengju, WANG Lili, ZHANG Wenqi, LIU Yang, LI Wenbin. Effect of moisture regain on strength of quartz yarns before and after weaving [J]. Journal of Textile Research, 2022, 43(05): 92-96.
[12] SUN Chunhong, DING Guangtai, FANG Kun. Cashmere and wool classification based on sparse dictionary learning [J]. Journal of Textile Research, 2022, 43(04): 28-32.
[13] YU Yan, WANG Xichao, ZHANG Ruiyun, LI Rongli, CHENG Longdi. Structure and performances of Yunnan wild fireweed fiber and its fibrous network [J]. Journal of Textile Research, 2022, 43(04): 10-14.
[14] SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites [J]. Journal of Textile Research, 2022, 43(04): 68-73.
[15] LI Xingxing, LI Qin, YUE Tiantian, LIU Yuqing. Progress in microfluidics preparation technology of micro/nano cellulose materials [J]. Journal of Textile Research, 2022, 43(04): 180-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!