Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (09): 46-51.doi: 10.13475/j.fzxb.20210305607

• Fiber Materials • Previous Articles     Next Articles

Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties

CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2021-03-15 Revised:2021-06-16 Online:2021-09-15 Published:2021-09-27
  • Contact: ZHENG Min E-mail:zhengmin@suda.edu.cn

Abstract:

To prepare textile materials with high photothermal conversion efficiency, three-dimensional MoS2 nanoparticles with strong near-infrared absorption capacity were prepared by hydrothermal synthesis. MoS2 nanoparticles were added to polyurethane (PU) spinning solution, and MoS2/PU composite photothermal fibrous membranes was prepared by electrospinning. The structure and properties of MoS2 nanoparticles and MoS2/PU composite fibrous membranes were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffractometer powder diffraction and fourier transform infrared spectrometer. The results show that after 0.8 W/cm2 near-infrared light irradiation for 1 min, the temperature of MoS2/PU composite fibrous membranes rises by 10.48 ℃, and the photothermal conversion efficiency was increased up to 31.07%. After a long time of repeated temperature rises and falls, the thermal effect did not decay. At the same time, the temperature rose 31% higher than the black PU fibrous membranes under the sunlight irradiation for 5 min. After high temperature treatment and immersion in simulated sweat for 24 hours, the composite fiber membrane still maintain its original strength. In summary, the MoS2/PU composite fibrous membranes have excellent photothermal properties. It can effectively convert light energy into heat energy, and maintain excellent structural stability.

Key words: functional material, photothermal conversion, near-infrared radiation, electrospinning, MoS2/polyurethane composite fibrous membrane

CLC Number: 

  • TS102.5

Fig.1

XRD pattern of MoS2 nanoparticles"

Fig.2

Micromorphology of MoS2 (a) and MoS2/PU composite fibrous membranes (b)"

Fig.3

FT-IR of MoS2, PU and MoS2/PU composite fibrous membranes"

Fig.4

Temperature changes of MoS2 aqueous dispersion under near infrared"

Fig.5

UV-vis spectrum of MoS2 aqueous dispersion and MoS2/PU composite fibrous membranes"

Fig.6

Temperature changes of MoS2/PU composite fibrous membranes under different near infrared illumination time (a) and fixed illumination time (b)"

Fig.7

Temperature changes of MoS2/PU composite fibrous membranes under natural sunlight"

Fig.8

Stress-strain curves of MoS2/PU composite fibrous membranes under natural sunlight"

[1] GAO M, PAN Y, JIN Y, et al. A review on the structural dependent optical properties and energy transfer of Mn4+ and multiple ion-codoped complex oxide phosphors[J]. RSC Advances, 2021, 11(2):760-779.
doi: 10.1039/D0RA08550B
[2] HUANG X, HAN S, HUANG W, et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters[J]. Chemical Society Reviews, 2013, 42(1):173-201.
doi: 10.1039/C2CS35288E
[3] TSUCHIKAWA S, KOBORI H. A review of recent application of near infrared spectroscopy to wood science and technology[J]. Journal of Wood Science, 2015, 61(3):213-220.
doi: 10.1007/s10086-015-1467-x
[4] HSU P C, LIU X, LIU C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters, 2015, 15(1):365-371.
doi: 10.1021/nl5036572
[5] 王敏, 李俊. 发热保暖服装材料的开发现状及发展趋势[J]. 产业用纺织品, 2009, 27(4):6-9.
WANG Min, LI Jun. Current status and development trend of exothermic warmth retention material for garment[J]. Technical Textiles, 2009, 27(4):6-9.
[6] 易领, 张何, 傅昕, 等. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能[J]. 纺织学报, 2020, 41(1):102-109.
YI Ling, ZHANG He, FU Xin, et al. Preparation and far-infrared emission performance of graphene based zirconium/titanium composites modified cotton fabrics[J]. Journal of Textile Research, 2020, 41(1):102-109.
[7] 陈莉, 刘皓. 可加热纬编针织物的电热性能[J]. 纺织学报, 2015, 36(4):50-54.
CHEN Li, LIU Hao. Electric heating performance of heatable weft knitted fabric[J]. Journal of Textile Research, 2015, 36(4):50-54.
[8] ZHANG Q, UCHAKER E, CANDELARIA S L, et al. Nanomaterials for energy conversion and storage[J]. Chemical Society Reviews, 2013, 42(7):3127-3171.
doi: 10.1039/c3cs00009e
[9] CONG L, XIE H, LI J. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries[J]. Advanced Energy Materials, 2017, 7(12):1601906.
doi: 10.1002/aenm.v7.12
[10] YUN Q, LU Q, ZHANG X, et al. Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion[J]. Angewandte Chemie International Edition, 2018, 57(3):626-646.
doi: 10.1002/anie.v57.3
[11] 张琼, 刘翰霖, 李平平, 等. 聚氨酯/二氧化硅复合超细纤维膜的制备及其防水透湿性能[J]. 纺织学报, 2019, 40(2):1-7.
ZHANG Qiong, LIU Hanlin, LI Pingping, et al. Preparation and waterproof and moisture-permeable properties of electrospun polyurethane/silica composite superfine fiber menbrane[J]. Journal of Textile Research, 2019, 40(2):1-7.
doi: 10.1177/004051757004000101
[12] YAN Y, XIA B, GE X, et al. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2013, 5(24):12794-12798.
[13] ZHANG L, GUO Y, IQBAL A, et al. One-step synjournal of the 3D flower-like heterostructure MoS2/CuS nanohybrid for electrocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2018, 43(3):1251-1260.
doi: 10.1016/j.ijhydene.2017.09.184
[14] 李国庆, 李平平, 刘瀚霖, 等. 聚丙烯腈/聚氨酯透明膜的制备及其性能[J]. 纺织学报, 2020, 41(3):20-25.
LI Guoqing, LI Pingping, LIU Hanlin, et al. Preparation and properties of polyacrylonitrile/polyurethane transparent film[J]. Journal of Textile Research, 2020, 41(3):20-25.
[15] CHEN D, LIU M, YIN L, et al. Single-crystalline MoO3 nanoplates: topochemical synjournal and enhanced ethanol-sensing performance[J]. Journal of Materials Chemistry, 2011, 21(25):9332-9342.
doi: 10.1039/c1jm11447f
[1] WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30.
[2] QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45.
[3] CHEN Yali, ZHAO Guomeng, REN Lipei, PAN Luqi, CHEN Bei, XIAO Xingfang, XU Weilin. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials [J]. Journal of Textile Research, 2021, 42(08): 115-121.
[4] ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56.
[5] ZHANG Tingting, XU Kexin, JIN Mengtian, GE Shijie, GAO Guohong, CAI Yixiao, WANG Huaping. Recent progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and it's application in water treatment [J]. Journal of Textile Research, 2021, 42(07): 175-183.
[6] YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68.
[7] YANG Zhi, LIU Chengkun, WU Hong, MAO Xue. Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2021, 42(07): 54-61.
[8] GUO Fengyun, GUO Ziyi, GAO Lei, ZHENG Linjing. Preparation and properties of thermal bonded fibrous artificial blood vessels [J]. Journal of Textile Research, 2021, 42(06): 46-50.
[9] DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56.
[10] CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62.
[11] ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers [J]. Journal of Textile Research, 2021, 42(05): 1-8.
[12] ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang, CHEN Wenxing. Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion [J]. Journal of Textile Research, 2021, 42(05): 9-15.
[13] ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45.
[14] YU Meiqiong, YUAN Hongmei, CHEN Lihui. Rheological properties of cellulose/LiCl/ N, N-dimethylacetamide solution [J]. Journal of Textile Research, 2021, 42(05): 23-30.
[15] ZHAO Xinzhe, WANG Shaoxia, GAO Jing, WANG Lu. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes [J]. Journal of Textile Research, 2021, 42(04): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!