Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 71-77.doi: 10.13475/j.fzxb.20210305707

• Fiber Materials • Previous Articles     Next Articles

Preparation and performance of chitosan-based antibacterial gel

ZHANG Tao1, WANG Fuping1, CHEN Guobao1, WU Jiyu2, PANG Yani2, CHEN Zhongmin1()   

  1. 1. College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, China
    2. Chongqing Hualun Medical Equipment Co., Ltd., Chongqing 400039, China
  • Received:2021-03-15 Revised:2021-10-17 Online:2022-03-15 Published:2022-03-29
  • Contact: CHEN Zhongmin E-mail:chenzhongmin@cqut.edu.cn

Abstract:

This research addresses the problems of low viscosity and poor antibacterial effect of the chitosan-sodium glycerophosphate system. The chitosan-sodium glycerophosphate system was used as the base material. After sodium carboxymethylcellulose was added to adjust the viscosity, sericin and silk fibroin were added separately to determine the optimal combination to prepare a composite gel. The antibacterial effect, the combination of each component, the antibacterial mechanism, cytotoxicity, and skin irritation of the composite gel were analyzed. The results show that the mixture of the 3% chitosan and 50% sodium glycerophosphate in the volume ratio of 9∶20 together with 1.5% sodium carboxymethyl cellulose demonstrates the moderate viscosity of (68 300±540) mPa·s, which was suitable for external use. When the mass fraction of sericin is 15%, the antibacterial effect of the composite gel is the best, and the antibacterial rate against Escherichia coli and Staphylococcus aureus is (96.20±3.40)% and (86.30±2.51)%, respectively. The gel has a stable structure, and it was found that the composite gel changes the permeability of the bacterial cell membrane, resulting in the inability of the bacteria to proliferate and antibacterial effects, without cytotoxicity and skin irritation.

Key words: chitosan, sericin, silk fibroin, composite gel, antimicrobial

CLC Number: 

  • TQ341.5

Fig.1

Antibacterial effects of different mass fractions of SS (a) and SF (b) composite gel extracts"

Fig.2

Antibacterial properties of different mass fractions of SS (a) and SF (b) composite gel extracts"

Fig.3

Infrared spectra of composite gel and its component"

Tab.1

Effect of different mass fraction extracts on integrity of bacterial cell membrane"

试样名称 浸提液质量
分数/%
OD值 细胞膜透
过率/%
浸提液+细菌悬液+PI 25 0.222±0.025 23.67
50 0.305±0.018 31.47
75 0.431±0.031 45.94
100 0.546±0.036 58.17
氨苄青霉素+细菌悬液 +PI 0.601±0.039 64.07
Triton X-100+细菌悬液+PI 0.938±0.052 100
缓冲液+ 细菌悬液+PI 0 0
浸提液+PI 100 0 0

Fig.4

Change of electrical conductivity of gel in 8 h after treatment of Escherichia coli"

Fig.5

Growth of L929 cells in extract medium containing different mass concentration"

Fig.6

Rat skin irritation response chart. (a) Skin reaction after applying formaldehyde; (b) Skin reaction after applying gel"

[1] 王杨阳, 王岩松. 丝素蛋白生物材料在抗菌领域中的研究进展[J]. 中国感染控制杂志, 2018,17(6):93-98.
WANG Yangyang, WANG Yansong. Research progress of silk fibroin biomateriarls in the field of antibacterial materials[J]. Chinese Journal of Infection Control, 2018,17(6):93-98.
[2] 吴建兵, 夏娟. 创伤修复用丝素蛋白敷料的研究进展[J]. 丝绸, 2020,57(10):29-33.
WU Jianbing, XIA Juan. Research progress of silk fibroin dressing for wound healing[J]. Journal of Silk, 2020,57(10):29-33.
[3] 徐红云, 刘春林, 李宜铮, 等. 伤口感染病原菌分布及耐药谱分析[J]. 中国微生态杂志, 2013,25(11):1313-1316.
XU Hongyun, LIU Chunlin, LI Yizheng, et al. Wound infection pathogens and drug resistance spectrum analysis[J]. Chinese Journal of Microecology, 2013,25(11):1313-1316.
[4] 郭梦雅, 李晓意, 易凯, 等. 纳米氧化锌的制备及抗菌性能研究[J]. 包装工程, 2019,40(19):172-179.
GUO Mengya, LI Xiaoyi, YI Kai, et al. Preparation and antibacterial property of Zinc oxide nanoparticles[J]. Packaging Engineering, 2019,40(19):172-179.
[5] 杜天乐, 刘东林, 景春晖, 等. 创伤敷料对促进愈合的研究进展[J]. 医学综述, 2015,21(6):969-971.
DU Tianle, LIU Donglin, JING Chunhui, et al. Research progress of wound dressing to promote wound healing[J]. Medical Recapitulate, 2015,21(6):969-971.
[6] 高层层, 王富平, 梁敏, 等. 针对糖尿病创口的抑菌敷料制备及促愈合性能评价[J]. 丝绸, 2017,54(3):13-19.
GAO Cengceng, WANG Fuping, LIANG Min, et al. Preparation of antibacterial dressing for diabetic wound and evaluation of its performance of promoting healing[J]. Journal of Silk, 2017,54(3):13-19.
[7] 张显华, 冯向伟, 刘凡, 等. 丝胶蛋白纳米纤维的研究进展[J]. 辽宁丝绸, 2017,16(3):16-20.
ZHNAG Xianhua, FENG Xiangwei, LIU Fan, et al. Research progress of sericin nanofibers[J]. Liaoning Tussah Silk, 2017,16(3):16-20.
[8] 胡林峰, 邢荣娥, 刘松, 等. 壳聚糖衍生物及其抑菌活性研究进展[J]. 植物保护, 2015,41(3):1-6.
HU Linfeng, XING Ronge, LIU Song, et al. Research on chitosan derivatives and its antibacterial activity[J]. Plant Protection, 2015,41(3):1-6.
[9] 张国光, 邓春梅, 康信煌, 等. 可注射甘油磷酸钠-壳聚糖/海藻酸钠复合水凝胶的制备及性能研究[J]. 化学与生物工程, 2019,36(4):33-37.
ZHANG Guoguang, DENG Chunmei, KANG Xinhuang, et al. Preparation and properties of injectable sodium glycerophosphate-chitosan/sodium alginate composite hydrogel[J]. Chemistry & Bioengineering, 2019,36(4):33-37.
[10] HUANG X, FU Q, DENG Y, et al. Surface roughness of silk fibroin/alginate microspheres for rapid hemostasis in vitro and in vivo[J]. Garbohydrate Polymers, 2021,253(1):117256.
[11] 张瑶琴, 陈忠敏, 张艳冬, 等. 丝胶蛋白分子结构及其制取条件[J]. 中国组织工程研究与临床康复, 2011,15(3):468-472.
ZHANG Yaoqin, CHEN Zhongmin, ZHANG Yandong, et al. Structure and extraction conditions of sericin protein[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011,15(3):468-472.
[12] 钟红荣, 方艳, 包红, 等. 丝素基双层敷料的制备及其性能[J]. 纺织学报, 2020,41(2):14-19.
ZHONG Hongrong, FANG Yan, BAO Hong, et al. Preparation and properties of silk fibroin based bilayer dressing material[J]. Journal of Textile Research, 2020,41(2):14-19.
[13] 张治斌, 李刚, 毛森贤, 等. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019,40(10):8-12.
ZHANG Zhibin, LI Gang, MAO Senxian, et al. Preparation and antibacterial activity of silk fibroin/chitosan microspheres[J]. Journal of Textile Research, 2019,40(10):8-12.
doi: 10.1177/004051757004000102
[14] 殷聚辉, 郭静, 王艳, 等. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021,42(2):54-59.
YIN Juhui, GUO Jing, WANG Yan, et al. Preparation and properties of sodium alginate/krill protein scaffold materials[J]. Journal of Textile Research, 2021,42(2):54-59.
[15] 刘爱红, 孙康宁, 李爱民. 壳聚糖-甘油磷酸钠温敏凝胶的制备与表征[J]. 材料导报, 2010,24(7):1121-1131.
LIU Aihong, SUN Kangning, LI Aimin. Preparation and characterization of silk chitosan-glycerophosphate thermosensitive gels[J]. Materials Review, 2010,24(7):1121-1131.
[16] 赵玉瑛, 江茹兰, 张顺业, 等. 丝胶蛋白的生物活性及应用研究进展[J]. 蚕业科学, 2019,45(5):140-149.
ZHAO Yuying, JIANG Rulan, ZHANG Shunye, et al. Research progress in bioactivity and application of sericin[J]. Science of Sericulture, 2019,45(5):140-149.
[17] 姜波, 蒋玉东, 关瑛, 等. 丝素蛋白材料在皮肤创伤愈合中的研究进展[J]. 现代生物医学进展, 2019,19(6):207-210.
JIANG Bo, JIANG Yudong, GUAN Ying, et al. Research progress of silk fibroin biomaterials in skin healing[J]. Progress in Modern Biomedicine, 2019,19(6):207-210.
[18] ZHAO R, LI X, SUN B, et al. Electrospun chitosan/sericin composite nanofibers with antibaterial property as potential wound dressings[J]. International Journal of Biological Macromolecules, 2014,68(7):92-97.
doi: 10.1016/j.ijbiomac.2014.04.029
[19] XUE R, LIU Y L, ZHANG Q S, et al. Shape change and interaction mechanism of Escherichia coli treated by sericin and sericin-based hydrogel for wound healing[J]. Applied and Environment Microbiology, 2016,82(15):4663-4672.
doi: 10.1128/AEM.00643-16
[20] SHANKAR S, WANG L F, RHIM J M. Preparations and characterization of alginate/silver composite films: effect of types of silver particles[J]. Carbohydrate Polymers, 2016,146:4663-4672.
[21] 肖肖, 陈昌盛, 刘伟强, 等. 丝胶蛋白的结构,性能及生物医学应用[J]. 化学进展, 2017 (5):513-523.
doi: 10.7536/PC170224
XIAO Xiao, CHEN Changsheng, LIU Weiqiang, et al. Structure, features and biomedical applications of silk sericin[J]. Progress in Chemistry, 2017 (5):513-523.
doi: 10.7536/PC170224
[1] WANG Chenmeizi, WANG Ling, ZHANG Qingle, WANG Ying, XIA Xin. Preparation and property of composite hydrogel nonwoven based fresh-keeping material [J]. Journal of Textile Research, 2022, 43(03): 132-138.
[2] CHENG Yue, HU Yingjie, FU Yijun, LI Dawei, ZHANG Wei. Preparation and properties of antibacterial hemostatic nonwoven elastic bandage [J]. Journal of Textile Research, 2022, 43(03): 31-37.
[3] WEI Na'na, LIU Die, MA Zheng, JIAO Chenlu. Adsorption performance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method [J]. Journal of Textile Research, 2022, 43(02): 53-60.
[4] YAO Ruotong, ZHAO Jingyuan, YAN Yixin, DUAN Lirong, WANG Tian, YAN Jia, ZHANG Shujun, LI Gang. Fabrication of novel biodegradable braided nerve grafts for nerve regeneration [J]. Journal of Textile Research, 2022, 43(02): 125-131.
[5] JIANG Yulin, WANG Hui, ZHANG Keqin. Research progress of silk fibroin-based hydrogel bioinks for 3D bio-printing [J]. Journal of Textile Research, 2021, 42(11): 1-8.
[6] LIU Shuping, LI Liang, LIU Rangtong, HU Zedong, GENG Changjun. Flame retardant finishing of cotton fabric with tri-aminopropyl triethoxysilane [J]. Journal of Textile Research, 2021, 42(10): 107-114.
[7] ZHOU Huiling, ZHU Lisha, WU Xiongying, DING Xuemei. Effect of electro-spraying treatment on anti-pilling performance of wool fabrics [J]. Journal of Textile Research, 2021, 42(10): 120-125.
[8] SUN Yusheng, ZUO Baoqi. Research progress of high-molecular polymer material for bone defect repair [J]. Journal of Textile Research, 2021, 42(08): 175-184.
[9] LIU Hao, LU Minglei, HUANG Xiaowei, WANG Na, WANG Xuefang, NING Xin, MING Jinfa. Preparation and characterization of silk fibroin hydrogel in acid-alcohol system [J]. Journal of Textile Research, 2021, 42(08): 41-48.
[10] DING Mengyao, DAI Mengnan, LI Meng, LIU Ping, XU Jingjing, WANG Jiannan. Separation and characterization of silk fibroin with different molecular weight [J]. Journal of Textile Research, 2021, 42(07): 46-53.
[11] HE Xuemei, MAO Haiyan, CAI Lu. Adsorption performance of chitosan based hybrid aerogel on reactive dyes [J]. Journal of Textile Research, 2021, 42(02): 148-155.
[12] YANG Ya, YAN Fengyi, WANG Hui, ZHANG Keqin. Protein adsorption and cell response on bio-interfaces of silk fibroin/octacalcium phosphate composites [J]. Journal of Textile Research, 2021, 42(02): 41-46.
[13] CAO Genyang, WANG Yunli, SHENG Dan, PAN Heng, XU Weilin. Promotion mechanism of color fastness to sublimation in thermovacuum environmental conditions for fibroin powder/pigment complex [J]. Journal of Textile Research, 2021, 42(02): 1-6.
[14] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[15] SONG Guangzhou, TU Fangfang, DING Mengyao, DAI Mengnan, YIN Yin, DONG Fenglin, WANG Jiannan. Negatively enhanced modification of silk fibroin and its load ability to calcitonin gene-related peptide [J]. Journal of Textile Research, 2020, 41(12): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!