Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (09): 70-75.doi: 10.13475/j.fzxb.20210305806

• Textile Engineering • Previous Articles     Next Articles

Topological optimization design of dynamic moisture and temperature control for three dimensional knitted fabrics

YUAN Luning1,2, WANG Jianping1,2,3(), ZHANG Bingjie1,2, ZHANG Yuting1,2, YAO Xiaofeng1,2   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design & Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai International Institute of Design and Innovation, Tongji University, Shanghai 200092, China
  • Received:2021-03-15 Revised:2021-06-10 Online:2021-09-15 Published:2021-09-27
  • Contact: WANG Jianping E-mail:wangjp@dhu.edu.cn

Abstract:

In order to develop a three-dimensional knitted fabric with excellent dynamic humidity and temperature control, 70 dtex(72 f)×2 DRYARN® and 30 dtex DRYARN® wrapped with a 30 dtex spandex filament were selected as raw materials. The topological optimization design method of three-dimensional knitted fabrics was proposed, where the temperature control units were optimized to be arranged in V-shape, Y-shape and other dislocated arrangement, and a folded sheet structure was created by locally stretching and pleating the fabric by using the single-sided jacquard process. The result show that when the human body is sweating, the inner layer of the folded sheet structure absorbs sweat drops and transfers the moisture to the surface layer for rapid evaporation. When the human body feels cold, the inner air channel stores still air and effectively controls the temperature. The insulation rate of the prepared fabrics is more than 54%, and it has excellent temperature control performance. The overall liquid water transfer capacity is more than grade 3, and the liquid water dynamic transfer performance is good, while maintaining excellent tensile recovery performance. It provides a new idea for the research and development of three-dimensional knitted fabrics for winter thermal sports underwear.

Key words: functional knifted fabric, humidity and temperature control, 3-D knitted fabrics, topological geometry

CLC Number: 

  • TS941.61

Fig.1

Schematic diagram of folded sheet structure. (a) Front; (b) Side; (c) Back"

Fig.2

Knitting idea of temperature control unit"

Fig.3

Schematic diagram of arrangement of temperature control unit. (a)Arrangement 1; (b)Arrangement 2; (c)Arrangement 3; (d)Arrangement 4"

Fig.4

SEM images of fiber bundle(×200). (a) DRYARN®; (b) DRYARN® coated yarn; (c) Nylon; (d) Polypropylene covered yarn"

Tab.1

Fabric weave specification parameter table"

织物编号 纱线种类 控温单元
排列方式
厚度/
mm
面密度/
(g·m-2)
密度
面纱 地纱 纵密/(横列·(5 cm)-1) 横密(纵行·(5 cm)-1)
1# 70 dtex(72 f)×2
DRYARN®
30 dtex
DRYARN®
包覆
30 dtex氨纶
1 3.15 598 189 98
2# 2 2.43 436 159 91
3# 3 3.05 551 169 93
4# 4 3.53 560 153 107
5# 140 dtex
锦纶
50 dtex
丙纶包覆
20 dtex
氨纶
1 2.55 623 203 104
6# 2 2.08 490 162 101
7# 3 2.67 578 177 102
8# 4 3.18 630 159 111

Tab.2

Test results of thermal insulation performance of fabrics"

织物编号 热阻/(m2·K·W-1) 保温率/%
1# 81.72 58.09
2# 71.32 54.74
3# 106.50 64.37
4# 91.31 60.76
5# 66.18 52.89
6# 72.68 55.21
7# 88.58 60.04
8# 81.02 57.88

Tab.3

Test results of moisture absorption and quick drying properties of fabrics"

织物编号 浸湿时间/s 吸水速率/(%·s-1) 最大浸湿半径/mm 液态水分扩散速率/(mm·s-1) 单向传递指数 液态水动态
传递综合指数
表层 底层 表层 底层 表层 底层 表层 底层
1# 7.22 23.86 64.66 107.15 11.25 15.00 0.86 1.79 364.76 0.72
2# 6.52 20.46 41.60 69.17 11.25 13.75 0.98 0.81 371.71 0.63
3# 6.29 17.96 38.88 79.61 10.00 13.00 1.14 1.19 324.45 0.61
4# 13.00 17.56 39.99 84.38 8.00 11.00 0.89 0.76 455.12 0.65
5# 10.66 24.87 28.18 100.57 8.00 12.00 0.74 0.47 319.77 0.58
6# 5.89 35.20 30.83 103.13 9.17 10.00 0.88 0.34 274.99 0.53
7# 19.14 31.75 27.32 94.34 6.00 10.00 0.72 0.54 352.71 0.54
8# 6.43 20.35 62.38 81.01 10.00 13.00 0.96 0.76 242.30 0.52

Tab.4

Test results of tensile recovery properties of fabrics"

织物编号 拉伸回复率/%
经向 纬向
1# 82.22 90.08
2# 88.30 90.18
3# 87.19 89.90
4# 86.47 88.12
5# 67.42 92.04
6# 83.88 94.61
7# 79.75 94.62
8# 88.29 96.29
[1] 吴济宏, 望潇, 张新斌, 等. 功能性针织面料及生产技术发展趋势[J]. 针织工业, 2019, 368(9):1-3.
WU Jihong, WANG Xiao, ZHANG Xinbin, et al. Development trend of functional knitted fabrics and production technology[J]. Knitting Industries, 2019, 368(9):1-3.
[2] 梁佳璐, 丛洪莲, 张爱军. 纬编两面提花针织物的工艺设计模型[J]. 纺织学报, 2020, 41(1):69-74.
LIANG Jialu, CONG Honglian, ZHANG Aijun. Process design model of weft knitted double face jacquard fabric[J]. Journal of Textile Research, 2020, 41(1):69-74.
[3] 陈思, 程明丽. 双面针织物的开发与服用性能[J]. 上海纺织科技, 2020, 48(12):37-42.
CHEN Si, CHENG Mingli. Development and wearability of double knitted fabric[J]. Shanghai Textile Science and Technology, 2020, 48(12):37-42.
[4] MARCELA F, EDUARDO F, SANDRA R, et al. Development and characterization of weft-knitted fabrics of naturally occurring polymer fibers for sustainable and functional textiles[J]. Polymers, 2021, 13(4):665.
doi: 10.3390/polym13040665
[5] WU L, ZHAO F, XIE J, et al. The deformation behaviors and mechanism of weft knitted fabric based on micro-scale virtual fiber model[J]. International Journal of Mechanical Sciences, 2020, 187(19):929-942.
[6] 杨恩惠, 初曦, 邱华. 纬编针织物导热性能的有限元仿真[J]. 丝绸, 2020, 57(1):31-36.
YANG Enhui, CHU Xi, QIU Hua. Finite element simulation of thermal conductivity of weft knitted fabric[J]. Journal of Silk, 2020, 57(1):31-36.
[7] 王欣. 羊毛与调湿控温涤纶混纺织物的热湿舒适综合评价[D]. 上海:东华大学, 2020:25-30.
WANG Xin. Comprehensive evaluation of thermal and moisture comfort of wool and temperature controlled polyester blended fabric[D]. Shanghai: Donghua University, 2020:25-30.
[8] 黄小蝶, 崔沂, 张瑞云, 等. 多组分发热保暖针织物的热湿舒适性评价[J]. 上海纺织科技, 2020, 48(6):55-59.
HUANG Xiaodie, CUI Yi, ZHANG Ruiyun, et al. Evaluation of thermal and moisture comfort of multi-component thermal knitted fabric[J]. Shanghai Textile Science and Technology, 2020, 48(6):55-59.
[9] 刘宏亮, 祝雪峰, 杨迪雄. 基于等几何分析的结构优化设计研究进展[J]. 固体力学学报, 2018, 39(3):248-267.
LIU Hongliang, ZHU Xuefeng, YANG Dixiong. Research progress of structural optimization design based on isogeometric analysis[J]. Acta Mechanica Solida Sinica, 2018, 39(3):248-267.
[10] 张寅江, 邹专勇, 洪剑寒, 等. 纤维素纤维基水刺非织造材料的液态水传递性能研究[J]. 产业用纺织品, 2020, 38(4):34-39.
ZHANG Yinjiang, ZOU Zhuanyong, HONG Jianhan, et al. Liquid water transfer properties of cellulose fiber based spunlaced nonwovens[J]. Technical Textiles, 2020, 38(4):34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!