Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 207-216.doi: 10.13475/j.fzxb.20210308710

• Comprehensive Review • Previous Articles     Next Articles

Research progress of biochemical protective clothing

LI Chenfei1, LIU Yuanjun1,2,3(), ZHAO Xiaoming1,2,3   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Tianjin of Advanced Textile Composites, Tiangong University, Tianjin 300387, China
    3. Tianjin Key Laboratory of Advanced Fibers and Energy Storage, Tiangong University, Tianjin 300387, China
  • Received:2021-03-25 Revised:2021-09-13 Online:2022-07-15 Published:2022-07-29
  • Contact: LIU Yuanjun E-mail:liuyuanjuntg@163.com

Abstract:

In order to fully understand the performance requirements of biochemical protective clothing, the classification and moisture permeability mechanism of four types of biochemical protective clothing were introduced. The research progress of rubber based protective materials, ion exchange membrane materials, disinfection polymer materials and other polymer composite materials used in biochemical protective clothing was examined, and the research status of biochemical protective clothing was introduced. The new technologies used in biological protective clothing, including self-healing technology and electrospinning technology, were summarized, providing new ideas for the development of biological protective clothing. According to the development status of biochemical protective clothing, the current problems were pointed out, and the future research trend was prospected. It is concluded that although the biochemical protective materials are developed with rapid pace, many problems remain in their industrialization. The future work should be focused on the expansion and improvement of the protection scope and performance, making them more comfortable to wear with intelligence.

Key words: biochemical protective clothing, protective material, protection performance, comfort performance, intelligent

CLC Number: 

  • TS941.73

Fig.1

Moisture permeability mechanism of four kinds of biochemical protective clothing.(a) Isolated biochemical protective clothing;(b) Breathable biochemical protective clothing;(c) Semi-permeable biochemical protective clothing; (d) Choose breathable biochemical protective clothing."

[1] 闵小豹, 潘志娟. 国内外医用防护服结构与功能的比较与分析[J]. 纺织学报, 2020, 41(8):172-178.
MIN Xiaobao, PAN Zhijuan. Comparison and analysis of the structure and function of medical protective clothing at home and abroad[J]. Journal of Textile Research, 2020, 41(8):172-178.
[2] 刘宝成, 赵晓明. 生化防护服的研究现状及发展趋势[J]. 成都纺织高等专科学校学报, 2016, 33(4):216-219.
LIU Baocheng, ZHAO Xiaoming. Research status and development trend of biochemical protective clothing[J]. Journal of Chengdu Textile College, 2016, 33(4): 216-219.
[3] 钟卫兵, 卿星, 王跃丹. 纳米技术在生化防护服中的应用及研究进展[J]. 山东纺织经济, 2016(1):32-34.
ZHONG Weibing, QING Xing, WANG Yuedan. Applcation and research progress of nanotechnology in biochemical protective clothing[J]. Shandong Textile Economy, 2016(1):32-34.
[4] 吕晖, 朱宏勇, 程昊. 生化防护服的发展概述[J]. 中国个体防护装备, 2014(3):19-21.
LÜ Hui, ZHU Hongyong, CHENG Hao. Overview of the development of biochemical protective clothing[J]. China Personal Protective Equipment, 2014(3):19-21.
[5] 王得印, 李小银, 黄强, 等. 国内外隔绝式皮肤防护装备的现状及发展趋势[J]. 中国个体防护装备, 2015(6):17-22.
WANG Deyin, LI Xiaoyin, HUANG Qiang, et al. Current status and development trend of isolated skin protective equipment at home and abroad[J]. China Personal Protective Equipment, 2015(6):17-22.
[6] 毕波. 消防员着隔绝式防护服时身体冷却方法[J]. 消防科学与技术, 2015, 34(7):938-941.
BI Bo. The method of body cooling for firefighters wearing insulated protective clothing[J]. Fire Science and Technology, 2015, 34(7):938-941.
[7] KHALIL E. A technical overview on protective clothing against chemical hazards[J]. AASCIT Journal of Chemistry, 2015, 2(3):67-76.
[8] 杨智联, 郁娟, 刘其霞, 等. 透气式生化防护服的应用现状及发展趋势[J]. 棉纺织技术, 2020, 48(6):1-7.
YANG Zhilian, YU Juan, LIU Qixia, et al. Application status and development trend of breathable biochemical protective clothing[J]. Cotton Textile Technology, 2020, 48(6):1-7.
[9] SEN S G H L. Protective textile materials based on electron-spun nanofibers[J]. Journal of Advanced Materials, 2002, 34(3):44-55.
[10] 赵晓明, 刘宝成. 透气式防毒服的发展现状及最新研究进展[J]. 材料导报, 2018, 32(17):3083-3089.
ZHAO Xiaoming, LIU Baocheng. Development status and latest research progress of breathable anti-virus clothing[J]. Materials Guide, 2018, 32(17):3083-3089.
[11] SHI S, HAN Y, HU J. Robust waterproof and self-adaptive breathable membrane with heat retention property for intelligent protective cloth[J]. Progress in Organic Coatings, 2019. DOI: 10.1016/j.porgcoat.2019.105303.
doi: 10.1016/j.porgcoat.2019.105303.
[12] POKORNY J, FISER J, FOJTLIN M, et al. Verification of Fiala-based human thermophysiological model and its application to protective clothing under high metabolic rates[J]. Building and Environment, 2017, 126:13-26.
doi: 10.1016/j.buildenv.2017.08.017
[13] 田涛, 段惠莉, 吴金辉, 等. 国内外生化防护服的研究现状与发展对策[J]. 医疗卫生装备, 2008(7):29-31.
TIAN Tao, DUAN Huili, WU Jinhui, et al. Research status and development countermeasures of biochemical protective clothing at home and abroad[J]. Medical and Medical Equipment, 2008(7):29-31.
[14] 李和国, 李雷, 刘江歌. 选择透过性材料在生化防护服中的应用[J]. 中国个体防护装备, 2005(5):18-20.
LI Heguo, LI Lei, LIU Jiangge. Application of selective permeability materials in biochemical protective clothing[J]. China Personal Protective Equipment, 2005(5):18-20.
[15] DU X, XIN B, XU J, et al. Biomimetic superhydrophobic membrane with multi-scale porous microstructure for waterproof and breathable applica-tion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2020.125924.
doi: 10.1016/j.colsurfa.2020.125924.
[16] 赵越, 李雷, 李和国, 等. 选择透过式皮肤防护材料研究进展[J]. 功能高分子学报, 2020, 33(3):226-244.
ZHAO Yue, LI Lei, LI Heguo, et al. Research progress in selective penetration skin protective materials[J]. Journal of Functional Polymers, 2020, 33(3):226-244.
[17] 周濛濛, 蒋高明, 高哲. 针织结构生化防护材料的研究现状及发展前景[J]. 针织工业, 2020(3):1-5.
ZHOU Mengmeng, JIANG Gaoming, GAO Zhe. Research status and development prospects of knitted stucture biochemical protection materials[J]. Knitting Industries, 2020(3):1-5.
[18] 张婷婷, 张杰, 田新宇, 等. 气密型化学防护服研究进展[J]. 纺织学报, 2020, 41(12):174-181.
ZHANG Tingting, ZHANG Jie, TIAN Xinyu, et al. Rsearch progress of airtight chemical protective clothing[J]. Journal of Textile Research, 2020, 41(12):174-181.
doi: 10.1177/004051757104100215
[19] 燕鹏华, 梁滔, 朱晶, 等. 丁基橡胶行业现状分析[J]. 弹性体, 2020, 30(6):62-65.
YAN Penghua, LIANG Tao, ZHU Jing, et al. Analysis of current situation of butyl rubber industry[J]. Elastomers, 2020, 30(6):62-65.
[20] RUSZKIEWICZ J A, BURKLE A, MANGERICH A. NAD+ in sulfur mustard toxicity[J]. Toxicology Letters, 2020, 324:95-103.
doi: 10.1016/j.toxlet.2020.01.024
[21] ZHENG L, WANG D, XU Z, et al. High barrier properties against sulfur mustard of graphene oxide/butyl rubber composites[J]. Composites Science and Technology, 2019, 170:141-147.
doi: 10.1016/j.compscitech.2018.12.002
[22] 陆宁, 唐竹弟, 丛继信, 等. 偏二甲肼防护服涂覆层橡胶材料的研究[J]. 橡胶科技, 2017, 15(4):16-19.
LU Ning, TANG Zhudi, CONG Jixin, et al. Research on rubber material for coating layer of unsymmetrical dimethylhydrazine protective clothing[J]. Rubber Science & Technology, 2017, 15(4):16-19.
[23] ADWAITH S, SURESH A, RAMAN A, et al. Effective reuse of CIIR nanocomposite based CPC by the evaluation of thermal decontamination as well as gas barrier properties[J]. Materials Today: Proceedings, 2019, 18: 4630-4636.
doi: 10.1016/j.matpr.2019.07.447
[24] JUNG K H, POURDEYHIMI B, ZHANG X W. Chemical protection performance of polystyrene sulfonic acid-filled polypropylene nonwoven membranes[J]. Journal of Membrane Science, 2010, 362:137-142.
doi: 10.1016/j.memsci.2010.06.031
[25] YIN X, ZHANG J, Xu J, et al. Fast-acting and highly rechargeable antibacterial composite nanofibrous membrane for protective applications[J]. Composites Science and Technology, 2021. DOI: 10.1016/j.compscitech.2020.108574.
doi: 10.1016/j.compscitech.2020.108574.
[26] CHEN S, LI C, HOU T, et al. Polyhexamethylene guanidine functionalized chitosan nanofiber membrane with superior adsorption and antibacterial perfor-mances[J]. Reactive and Functional Polymers, 2019. DOI: 10.1016/j.reactfunctpolym.2019.104379.
doi: 10.1016/j.reactfunctpolym.2019.104379.
[27] CHENG K, ZHANG N, YANG N, et al. Rapid and robust modification of PVDF ultrafiltration membranes with enhanced permselectivity, antifouling and antibacterial performance[J]. Separation and Purification Technology, 2021. DOI: 10.1016/j.seppur.2021.118316.
doi: 10.1016/j.seppur.2021.118316.
[28] GUTCH P K, SRIVASTAVA R K, SEKHAR K. Polymeric decontaminant 2(N,N-dichloropolystyrene sulfonamide):synthesis, characterization, and efficacy against simulant of sulfur mustard[J]. Journal of Applied Polymer Science, 2008, 107(6):4109-4115.
doi: 10.1002/app.27636
[29] CHOI J, MOON D S, RYU S G, et al. N-chloro hydantoin functionalized polyurethane fibers toward protective cloth against chemical warfare agents[J]. Polymer, 2018, 138: 146-155.
doi: 10.1016/j.polymer.2018.01.066
[30] CHEN L, BROMBERG L, SCHREUDER-GIBSON H, et al. Chemical protection fabrics via surface oximation of electrospun polyacrylonitrile fiber mats[J]. Journal of Materials Chemistry, 2009, 19(16):2432-2438.
doi: 10.1039/b818639a
[31] YUAN M, TENG Z, WANG S, et al. Polymeric carbon nitride modified polyacrylonitrile fabrics with efficientself-cleaning and water disinfection under visible light[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.123506.
doi: 10.1016/j.cej.2019.123506.
[32] 王文聪, 范静静, 丁超, 等. 多功能复合导电毛织物的制备及其性能[J]. 纺织学报, 2019, 40(8):117-123.
WANG Wencong, FAN Jingjing, DING Chao, et al. Preparation and properties of multifunctional composite conductive wool fabric[J]. Journal of Textile Research, 2019, 40(8):117-123.
[33] 毛贻琴, 丁利君, 王浩, 等. 碳纳米管抗菌性能、机制及应用研究进展[J]. 功能材料, 2018, 49(10):10039-10042.
MAO Yiqin, DING Lijun, WANG Hao, et al. Research progress on antibacterial properties, mechanisms and applications of carbon nanotubes[J]. Functional Materials, 2018, 49(10):10039-10042.
[34] 李清文, 赵静娜, 张骁骅. 碳纳米管纤维的物理性能与宏量制备及其应用[J]. 纺织学报, 2018, 39(12):145-151.
LI Qingwen, ZHAO Jingna, ZHANG Xiaohua. Physical properties, macro-preparation and application of carbon nanotube fibers[J]. Journal of Textile Research, 2018, 39(12):145-151.
[35] AVILES-BARRETO S L, SULEIMAN D. Effect of single-walled carbon nanotubes on the transport properties of sulfonatedpoly(styrene-isobutylene-styrene) membranes[J]. Journal of Membrane Science, 2015, 474:92-102.
doi: 10.1016/j.memsci.2014.09.049
[36] ISLAM M S, NAZ A N, ALAM M N, et al. Electrospunpoly(vinyl alcohol)/silver nanoparticle/carbon nanotube multi-composite nanofiber mat: Fabrication, characterization and evaluation of thermal, mechanical and antibacterial properties[J]. Colloid and Interface Science Communications, 2020. DOI: 10.1016/j.colcom.2020.100247.
doi: 10.1016/j.colcom.2020.100247.
[37] KUMAR A, DALAL J, DAHIYA S, et al. In situ decoration of silver nanoparticles on single-walled carbon nanotubes by microwave irradiation for enhanced and durable anti-bacterial finishing on cotton fabric[J]. Ceramics International, 2019, 45(1):1011-1019.
doi: 10.1016/j.ceramint.2018.09.280
[38] 王佳豪, 李家成, 许锴, 等. 光催化材料去除水中病毒的研究进展[J]. 化工进展, 2020, 39(10):4248-4255.
WANG Jiahao, LI Jiacheng, XU Kai, et al. Research progress of photocatalytic materials for virus removal from water[J]. Progress in Chemical Industry, 2020, 39(10):4248-4255.
[39] SHIMIZU Y, ATEIA M, WANG M, et al. Disinfection mechanism of E. coli by CNT-TiO2 composites: photocatalytic inactivation vs. physical separation[J]. Chemosphere, 2019, 235:1041-1049.
doi: 10.1016/j.chemosphere.2019.07.006
[40] 金秀龙, 丁古巧. 石墨烯材料抗菌抗病毒研究进展[J]. 新材料产业, 2020(2):21-26.
JIN Xiulong, DING Guqiao. Research progress in anti-bacterial and antiviral graphene materials[J]. New Materials Industry, 2020(2):21-26.
[41] 蹇木强, 张莹莹, 刘忠范. 石墨烯纤维:制备、性能与应用[J]. 物理化学学报, 2022, 38(2): 22-39.
JIAN Muqiang, ZHANG Yingying, LIU Zhongfa. Graphene fibers: preparation, properties, and applications[J]. Acta Physico-Chimica Sinica, 2022, 38(2): 22-39.
[42] YU W, LI X, HE J, et al. Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles[J]. Journal of Colloid and Interface Science, 2021, 584:164-173.
doi: 10.1016/j.jcis.2020.09.092
[43] OUADIL B, AMADINE O, ESSAMLALI Y, et al. A new route for the preparation of hydrophobic and anti-bacterial textiles fabrics using Ag-loaded graphene nanocomposite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019. DOI: 10.1016/j.colsurfa.2019.123713.
doi: 10.1016/j.colsurfa.2019.123713.
[44] 张亚芳, 徐伯俊, 苏旭中, 等. 生物质石墨烯锦纶/涤纶抑菌纺织品开发与性能[J]. 丝绸, 2019, 56(4):56-62.
ZHANG Yafang, XU Bojun, SU Xuzhong, et al. Development and performance of biomass graphenenylon/polyester antibacterial textiles[J]. Journal of Silk, 2019, 56(4):56-62.
[45] 吴遥, 张秀玲, 习海玲, 等. 金属有机框架材料在化学战剂降解中的应用研究进展[J]. 化工新型材料, 2021, 49(1):209-213.
WU Yao, ZHANG Xiuling, XI Hailing, et al. Applicaton research progress of metal organic framework materials in the degradation of chemical warfare agents[J]. New Chemical Materials, 2021, 49(1):209-213.
[46] LEE D T, JAMIR J D, PETERSON G W, et al. Protective fabrics: metal-organic framework textiles for rapid photocatalytic sulfur mustard simulant detoxification[J]. Matter, 2020, 2(2):404-415.
doi: 10.1016/j.matt.2019.11.005
[47] SHEN C, MAO Z, XU H, et al. Catalytic MOF-loaded cellulose sponge for rapid degradation of chemicalwarfare agents simulant[J]. Carbohydrate Polymers, 2019, 213:184-191.
doi: 10.1016/j.carbpol.2019.02.044
[48] SONG Y, CHAU J, SIRKAR K K, et al. Membrane-supported metal organic framework based nanopacked bed for protection against toxic vapors and gases[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2020.117406.
doi: 10.1016/j.seppur.2020.117406.
[49] LARSSON A, QVARNSTROM J, LINDBERG S, et al. In vitro human skin decontamination efficacy of MOF-808 in decontamination lotion following exposure to the nerve agent VX[J]. Toxicology Letters, 2021, 339:32-38.
doi: 10.1016/j.toxlet.2020.12.014
[50] QI Y, HAN L, QI Y, et al. Anti-flavivirus activity of polyoxometalate[J]. Antiviral Research, 2020, 179: 104813.
doi: 10.1016/j.antiviral.2020.104813
[51] WU K, CHANG Y, WANG J. Preparation of polyoxometalate-doped aminosilane-modified silicate hybrid as a new barrier of chem-bio toxicant[J]. Journal of Inorganic Biochemistry, 2019. DOI: 10.1016/j.jinorgbio.2019.110788.
doi: 10.1016/j.jinorgbio.2019.110788.
[52] FANG Y, XING C, LIU J, et al. Supermolecular film crosslinked by polyoxometalate and chitosan with superior antimicrobial effect[J]. International Journal of Biological Macromolecules, 2020, 154:732-738.
doi: 10.1016/j.ijbiomac.2020.03.139
[53] BURU C T, WASSON M C, FARHA O K. H5PV2Mo10O40 polyoxometalate encapsulated in NU- 1000 metal-organic framework for aerobic oxidation of a mustard gas simulant[J]. ACS Applied Nano Materials, 2020, 3(1):658-664.
doi: 10.1021/acsanm.9b02176
[54] MISHRA B, SHARMA S. Shape memory materials with reversible shape change and self-healing abilities: a review[J]. Materials Today: Proceedings, 2021, 44:4563-4568.
doi: 10.1016/j.matpr.2020.10.820
[55] 郭靖, 高翔, 刘兰轩, 等. 复合材料用自修复微胶囊的研究进展[J]. 材料保护, 2019, 52(6):127-132.
GUO Jing, GAO Xiang, LIU Lanxuan, et al. Research progress of self-healing microcapsules for composite materials[J]. Materials Protection, 2019, 52(6):127-132.
[56] LITINA C, AL-TABBAA A. First generation microcapsule-based self-healing cementitious construction repair materials[J]. Construction and Building Materials, 2020. DOI: 10.1016/j.conbuildmat.2020.119389.
doi: 10.1016/j.conbuildmat.2020.119389.
[57] KLING S, CZIGANY T. Damage detection and self-repair in hollow glass fiber fabric-reinforced epoxy composites via fiber filling[J]. Composites Science and Technology, 2014, 99:82-88.
doi: 10.1016/j.compscitech.2014.05.020
[58] ZHOU F, ZHANG Y, ZHANG D, et al. Fabrication of robust and self-healing superhydrophobic PET fabrics based on profiled fiber structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2020.125686.
doi: 10.1016/j.colsurfa.2020.125686.
[59] CANBAY C A, UNLU N. Production and characterization of shape memory polymeric nanocomposite materials[J]. Journal of Molecular Structure, 2021. DOI: 10.1016/j.molstruc.2020.129708.
doi: 10.1016/j.molstruc.2020.129708.
[60] 孙亚昕, 张秀玲, 习海玲, 等. 静电纺纳米纤维在化学战剂“防消一体化”中的研究进展[J]. 化工新型材料, 2021, 49(1):47-51.
SUN Yaxin, ZHANG Xiuling, XI Hailing, et al. Research progress of electrospun nanofibers in the "integration of prevention and elimination" of chemical warfare agents[J]. New Chemical Materials, 2021, 49(1):47-51.
[61] LIU Z, SHANG S, CHIU K, et al. Fabrication of silk fibroin/poly(lactic-co-glycolic acid)/graphene oxide microfiber mat via electrospinning for protective fabric[J]. Materials Science and Engineering: C, 2020. DOI: 10.1016/j.msec.2019.110308.
doi: 10.1016/j.msec.2019.110308.
[62] WANG S, POMERANTZ N L, DAI Z, et al. Polymer of intrinsic microporosity (PIM) based fibrous mat: combining particle filtration and rapid catalytic hydrolysis of chemical warfare agent simulants into a highly sorptive, breathable, and mechanically robust fiber matrix[J]. Materials Today Advances, 2020. DOI: 10.1016/j.mtadv.2020.100085.
doi: 10.1016/j.mtadv.2020.100085.
[63] QIU F, XIA Y, WU T, et al. Rationally designed high-performance Zr(OH)4@PAN nanofibrous membrane for self-detoxification of mustard gas simulant under an ambient condition[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2020.117452.
doi: 10.1016/j.seppur.2020.117452.
[64] SEO E, KIM H, BAE K, et al. Optimizing chemical and mechanical stability of catalytic nanofiber web for development of efficient detoxification cloths against CWAs[J]. Polymer, 2021. DOI: 10.1016/j.polymer.2020.123262
doi: 10.1016/j.polymer.2020.123262
[1] HUANG Rui, XIAO Aimin. Research and development of special-care incontinence underwear based on temperature and humidity sensor [J]. Journal of Textile Research, 2022, 43(07): 141-148.
[2] MA Liang, LI Jun. Application progress in cold protective clothing based on multiple intelligent technologies [J]. Journal of Textile Research, 2022, 43(06): 206-214.
[3] ZHENG Lu, YAN Weixiong, HU Jueliang, HAN Shuguang. Balanced optimization of garment hybrid assembly line based on modularization [J]. Journal of Textile Research, 2022, 43(04): 140-146.
[4] SHEN Chunya, LEI Junjie, RU Xin, PENG Laihu, HU Xudong. Multi-objective large-scale dynamic scheduling for weaving workshops based on improved NSGAII [J]. Journal of Textile Research, 2022, 43(04): 74-83.
[5] JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121.
[6] RONG Kai, FAN Wei, WANG Qi, ZHANG Cong, YU Yang. Application progress of two-dimensional transitional metal carbon/nitrogen compound composite in field of intelligent wearable textiles [J]. Journal of Textile Research, 2021, 42(09): 10-16.
[7] FANG Jian, REN Song, ZHANG Chuanxiong, CHEN Qian, XIA Guangbo, GE Can. Electroactive fibrous materials for intelligent wearable textiles [J]. Journal of Textile Research, 2021, 42(09): 1-9.
[8] TANG Qian, ZHANG Bingbing, ZHENG Xiaoyu. Design of wearable intelligent monitoring clothing for infants [J]. Journal of Textile Research, 2021, 42(08): 156-160.
[9] YANG Zhengyan, XUE Wenliang, ZHANG Chuanxiong, DING Yi, MA Yanxue. Recommendations for user's bottoms matching based on generative adversarial networks [J]. Journal of Textile Research, 2021, 42(07): 164-168.
[10] XU Xuemei. Improved genetic algorithm for fabric formulation prediction based on simulated annealing algorithm [J]. Journal of Textile Research, 2021, 42(07): 123-128.
[11] WANG Hang, WANG Bingxin, NING Xin, QU Lijun, TIAN Mingwei. Research progress in conductive inks for inkjet printing and its application for intelligent electronic textiles [J]. Journal of Textile Research, 2021, 42(06): 189-197.
[12] WANG Xiaobo, QIAN Xiaoming, WANG Lijing, LIU Yongsheng, BAI He. Review on liquid cooling garment and its feasibility study in fire fighting [J]. Journal of Textile Research, 2021, 42(06): 198-207.
[13] LIANG Jiahao, WU Yingzhu, LIU Haidong, HUANG Meilin, CAI Ruiyan, ZHOU Junjian, XIE Quanpei. Preparation and properties of humidity-sensitive polyurethane fibers with surface electrostatic implantation and adhesion of grapheme [J]. Journal of Textile Research, 2021, 42(06): 63-70.
[14] DU Jinsong, YU Yayun, ZHAO Ni, XIE Ziang, FEI Zhonghua, PAN Jingshu. Evaluation modelling for maturity in intelligent manufacturing for multi-type clothing factories [J]. Journal of Textile Research, 2021, 42(05): 162-167.
[15] JIANG Zhaohui, LI Yonggui, YANG Zitao, GUO Zengge, ZHANG Zhanqi, QI Yuanzhang, JIN Jian. Research progress in graphene/polymer composite fibers and textiles [J]. Journal of Textile Research, 2021, 42(03): 175-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .