Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 207-216.doi: 10.13475/j.fzxb.20210308710
• Comprehensive Review • Previous Articles Next Articles
LI Chenfei1, LIU Yuanjun1,2,3(), ZHAO Xiaoming1,2,3
CLC Number:
[1] | 闵小豹, 潘志娟. 国内外医用防护服结构与功能的比较与分析[J]. 纺织学报, 2020, 41(8):172-178. |
MIN Xiaobao, PAN Zhijuan. Comparison and analysis of the structure and function of medical protective clothing at home and abroad[J]. Journal of Textile Research, 2020, 41(8):172-178. | |
[2] | 刘宝成, 赵晓明. 生化防护服的研究现状及发展趋势[J]. 成都纺织高等专科学校学报, 2016, 33(4):216-219. |
LIU Baocheng, ZHAO Xiaoming. Research status and development trend of biochemical protective clothing[J]. Journal of Chengdu Textile College, 2016, 33(4): 216-219. | |
[3] | 钟卫兵, 卿星, 王跃丹. 纳米技术在生化防护服中的应用及研究进展[J]. 山东纺织经济, 2016(1):32-34. |
ZHONG Weibing, QING Xing, WANG Yuedan. Applcation and research progress of nanotechnology in biochemical protective clothing[J]. Shandong Textile Economy, 2016(1):32-34. | |
[4] | 吕晖, 朱宏勇, 程昊. 生化防护服的发展概述[J]. 中国个体防护装备, 2014(3):19-21. |
LÜ Hui, ZHU Hongyong, CHENG Hao. Overview of the development of biochemical protective clothing[J]. China Personal Protective Equipment, 2014(3):19-21. | |
[5] | 王得印, 李小银, 黄强, 等. 国内外隔绝式皮肤防护装备的现状及发展趋势[J]. 中国个体防护装备, 2015(6):17-22. |
WANG Deyin, LI Xiaoyin, HUANG Qiang, et al. Current status and development trend of isolated skin protective equipment at home and abroad[J]. China Personal Protective Equipment, 2015(6):17-22. | |
[6] | 毕波. 消防员着隔绝式防护服时身体冷却方法[J]. 消防科学与技术, 2015, 34(7):938-941. |
BI Bo. The method of body cooling for firefighters wearing insulated protective clothing[J]. Fire Science and Technology, 2015, 34(7):938-941. | |
[7] | KHALIL E. A technical overview on protective clothing against chemical hazards[J]. AASCIT Journal of Chemistry, 2015, 2(3):67-76. |
[8] | 杨智联, 郁娟, 刘其霞, 等. 透气式生化防护服的应用现状及发展趋势[J]. 棉纺织技术, 2020, 48(6):1-7. |
YANG Zhilian, YU Juan, LIU Qixia, et al. Application status and development trend of breathable biochemical protective clothing[J]. Cotton Textile Technology, 2020, 48(6):1-7. | |
[9] | SEN S G H L. Protective textile materials based on electron-spun nanofibers[J]. Journal of Advanced Materials, 2002, 34(3):44-55. |
[10] | 赵晓明, 刘宝成. 透气式防毒服的发展现状及最新研究进展[J]. 材料导报, 2018, 32(17):3083-3089. |
ZHAO Xiaoming, LIU Baocheng. Development status and latest research progress of breathable anti-virus clothing[J]. Materials Guide, 2018, 32(17):3083-3089. | |
[11] |
SHI S, HAN Y, HU J. Robust waterproof and self-adaptive breathable membrane with heat retention property for intelligent protective cloth[J]. Progress in Organic Coatings, 2019. DOI: 10.1016/j.porgcoat.2019.105303.
doi: 10.1016/j.porgcoat.2019.105303. |
[12] |
POKORNY J, FISER J, FOJTLIN M, et al. Verification of Fiala-based human thermophysiological model and its application to protective clothing under high metabolic rates[J]. Building and Environment, 2017, 126:13-26.
doi: 10.1016/j.buildenv.2017.08.017 |
[13] | 田涛, 段惠莉, 吴金辉, 等. 国内外生化防护服的研究现状与发展对策[J]. 医疗卫生装备, 2008(7):29-31. |
TIAN Tao, DUAN Huili, WU Jinhui, et al. Research status and development countermeasures of biochemical protective clothing at home and abroad[J]. Medical and Medical Equipment, 2008(7):29-31. | |
[14] | 李和国, 李雷, 刘江歌. 选择透过性材料在生化防护服中的应用[J]. 中国个体防护装备, 2005(5):18-20. |
LI Heguo, LI Lei, LIU Jiangge. Application of selective permeability materials in biochemical protective clothing[J]. China Personal Protective Equipment, 2005(5):18-20. | |
[15] |
DU X, XIN B, XU J, et al. Biomimetic superhydrophobic membrane with multi-scale porous microstructure for waterproof and breathable applica-tion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2020.125924.
doi: 10.1016/j.colsurfa.2020.125924. |
[16] | 赵越, 李雷, 李和国, 等. 选择透过式皮肤防护材料研究进展[J]. 功能高分子学报, 2020, 33(3):226-244. |
ZHAO Yue, LI Lei, LI Heguo, et al. Research progress in selective penetration skin protective materials[J]. Journal of Functional Polymers, 2020, 33(3):226-244. | |
[17] | 周濛濛, 蒋高明, 高哲. 针织结构生化防护材料的研究现状及发展前景[J]. 针织工业, 2020(3):1-5. |
ZHOU Mengmeng, JIANG Gaoming, GAO Zhe. Research status and development prospects of knitted stucture biochemical protection materials[J]. Knitting Industries, 2020(3):1-5. | |
[18] | 张婷婷, 张杰, 田新宇, 等. 气密型化学防护服研究进展[J]. 纺织学报, 2020, 41(12):174-181. |
ZHANG Tingting, ZHANG Jie, TIAN Xinyu, et al. Rsearch progress of airtight chemical protective clothing[J]. Journal of Textile Research, 2020, 41(12):174-181.
doi: 10.1177/004051757104100215 |
|
[19] | 燕鹏华, 梁滔, 朱晶, 等. 丁基橡胶行业现状分析[J]. 弹性体, 2020, 30(6):62-65. |
YAN Penghua, LIANG Tao, ZHU Jing, et al. Analysis of current situation of butyl rubber industry[J]. Elastomers, 2020, 30(6):62-65. | |
[20] |
RUSZKIEWICZ J A, BURKLE A, MANGERICH A. NAD+ in sulfur mustard toxicity[J]. Toxicology Letters, 2020, 324:95-103.
doi: 10.1016/j.toxlet.2020.01.024 |
[21] |
ZHENG L, WANG D, XU Z, et al. High barrier properties against sulfur mustard of graphene oxide/butyl rubber composites[J]. Composites Science and Technology, 2019, 170:141-147.
doi: 10.1016/j.compscitech.2018.12.002 |
[22] | 陆宁, 唐竹弟, 丛继信, 等. 偏二甲肼防护服涂覆层橡胶材料的研究[J]. 橡胶科技, 2017, 15(4):16-19. |
LU Ning, TANG Zhudi, CONG Jixin, et al. Research on rubber material for coating layer of unsymmetrical dimethylhydrazine protective clothing[J]. Rubber Science & Technology, 2017, 15(4):16-19. | |
[23] |
ADWAITH S, SURESH A, RAMAN A, et al. Effective reuse of CIIR nanocomposite based CPC by the evaluation of thermal decontamination as well as gas barrier properties[J]. Materials Today: Proceedings, 2019, 18: 4630-4636.
doi: 10.1016/j.matpr.2019.07.447 |
[24] |
JUNG K H, POURDEYHIMI B, ZHANG X W. Chemical protection performance of polystyrene sulfonic acid-filled polypropylene nonwoven membranes[J]. Journal of Membrane Science, 2010, 362:137-142.
doi: 10.1016/j.memsci.2010.06.031 |
[25] |
YIN X, ZHANG J, Xu J, et al. Fast-acting and highly rechargeable antibacterial composite nanofibrous membrane for protective applications[J]. Composites Science and Technology, 2021. DOI: 10.1016/j.compscitech.2020.108574.
doi: 10.1016/j.compscitech.2020.108574. |
[26] |
CHEN S, LI C, HOU T, et al. Polyhexamethylene guanidine functionalized chitosan nanofiber membrane with superior adsorption and antibacterial perfor-mances[J]. Reactive and Functional Polymers, 2019. DOI: 10.1016/j.reactfunctpolym.2019.104379.
doi: 10.1016/j.reactfunctpolym.2019.104379. |
[27] |
CHENG K, ZHANG N, YANG N, et al. Rapid and robust modification of PVDF ultrafiltration membranes with enhanced permselectivity, antifouling and antibacterial performance[J]. Separation and Purification Technology, 2021. DOI: 10.1016/j.seppur.2021.118316.
doi: 10.1016/j.seppur.2021.118316. |
[28] |
GUTCH P K, SRIVASTAVA R K, SEKHAR K. Polymeric decontaminant 2(N,N-dichloropolystyrene sulfonamide):synthesis, characterization, and efficacy against simulant of sulfur mustard[J]. Journal of Applied Polymer Science, 2008, 107(6):4109-4115.
doi: 10.1002/app.27636 |
[29] |
CHOI J, MOON D S, RYU S G, et al. N-chloro hydantoin functionalized polyurethane fibers toward protective cloth against chemical warfare agents[J]. Polymer, 2018, 138: 146-155.
doi: 10.1016/j.polymer.2018.01.066 |
[30] |
CHEN L, BROMBERG L, SCHREUDER-GIBSON H, et al. Chemical protection fabrics via surface oximation of electrospun polyacrylonitrile fiber mats[J]. Journal of Materials Chemistry, 2009, 19(16):2432-2438.
doi: 10.1039/b818639a |
[31] |
YUAN M, TENG Z, WANG S, et al. Polymeric carbon nitride modified polyacrylonitrile fabrics with efficientself-cleaning and water disinfection under visible light[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.123506.
doi: 10.1016/j.cej.2019.123506. |
[32] | 王文聪, 范静静, 丁超, 等. 多功能复合导电毛织物的制备及其性能[J]. 纺织学报, 2019, 40(8):117-123. |
WANG Wencong, FAN Jingjing, DING Chao, et al. Preparation and properties of multifunctional composite conductive wool fabric[J]. Journal of Textile Research, 2019, 40(8):117-123. | |
[33] | 毛贻琴, 丁利君, 王浩, 等. 碳纳米管抗菌性能、机制及应用研究进展[J]. 功能材料, 2018, 49(10):10039-10042. |
MAO Yiqin, DING Lijun, WANG Hao, et al. Research progress on antibacterial properties, mechanisms and applications of carbon nanotubes[J]. Functional Materials, 2018, 49(10):10039-10042. | |
[34] | 李清文, 赵静娜, 张骁骅. 碳纳米管纤维的物理性能与宏量制备及其应用[J]. 纺织学报, 2018, 39(12):145-151. |
LI Qingwen, ZHAO Jingna, ZHANG Xiaohua. Physical properties, macro-preparation and application of carbon nanotube fibers[J]. Journal of Textile Research, 2018, 39(12):145-151. | |
[35] |
AVILES-BARRETO S L, SULEIMAN D. Effect of single-walled carbon nanotubes on the transport properties of sulfonatedpoly(styrene-isobutylene-styrene) membranes[J]. Journal of Membrane Science, 2015, 474:92-102.
doi: 10.1016/j.memsci.2014.09.049 |
[36] |
ISLAM M S, NAZ A N, ALAM M N, et al. Electrospunpoly(vinyl alcohol)/silver nanoparticle/carbon nanotube multi-composite nanofiber mat: Fabrication, characterization and evaluation of thermal, mechanical and antibacterial properties[J]. Colloid and Interface Science Communications, 2020. DOI: 10.1016/j.colcom.2020.100247.
doi: 10.1016/j.colcom.2020.100247. |
[37] |
KUMAR A, DALAL J, DAHIYA S, et al. In situ decoration of silver nanoparticles on single-walled carbon nanotubes by microwave irradiation for enhanced and durable anti-bacterial finishing on cotton fabric[J]. Ceramics International, 2019, 45(1):1011-1019.
doi: 10.1016/j.ceramint.2018.09.280 |
[38] | 王佳豪, 李家成, 许锴, 等. 光催化材料去除水中病毒的研究进展[J]. 化工进展, 2020, 39(10):4248-4255. |
WANG Jiahao, LI Jiacheng, XU Kai, et al. Research progress of photocatalytic materials for virus removal from water[J]. Progress in Chemical Industry, 2020, 39(10):4248-4255. | |
[39] |
SHIMIZU Y, ATEIA M, WANG M, et al. Disinfection mechanism of E. coli by CNT-TiO2 composites: photocatalytic inactivation vs. physical separation[J]. Chemosphere, 2019, 235:1041-1049.
doi: 10.1016/j.chemosphere.2019.07.006 |
[40] | 金秀龙, 丁古巧. 石墨烯材料抗菌抗病毒研究进展[J]. 新材料产业, 2020(2):21-26. |
JIN Xiulong, DING Guqiao. Research progress in anti-bacterial and antiviral graphene materials[J]. New Materials Industry, 2020(2):21-26. | |
[41] | 蹇木强, 张莹莹, 刘忠范. 石墨烯纤维:制备、性能与应用[J]. 物理化学学报, 2022, 38(2): 22-39. |
JIAN Muqiang, ZHANG Yingying, LIU Zhongfa. Graphene fibers: preparation, properties, and applications[J]. Acta Physico-Chimica Sinica, 2022, 38(2): 22-39. | |
[42] |
YU W, LI X, HE J, et al. Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles[J]. Journal of Colloid and Interface Science, 2021, 584:164-173.
doi: 10.1016/j.jcis.2020.09.092 |
[43] |
OUADIL B, AMADINE O, ESSAMLALI Y, et al. A new route for the preparation of hydrophobic and anti-bacterial textiles fabrics using Ag-loaded graphene nanocomposite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019. DOI: 10.1016/j.colsurfa.2019.123713.
doi: 10.1016/j.colsurfa.2019.123713. |
[44] | 张亚芳, 徐伯俊, 苏旭中, 等. 生物质石墨烯锦纶/涤纶抑菌纺织品开发与性能[J]. 丝绸, 2019, 56(4):56-62. |
ZHANG Yafang, XU Bojun, SU Xuzhong, et al. Development and performance of biomass graphenenylon/polyester antibacterial textiles[J]. Journal of Silk, 2019, 56(4):56-62. | |
[45] | 吴遥, 张秀玲, 习海玲, 等. 金属有机框架材料在化学战剂降解中的应用研究进展[J]. 化工新型材料, 2021, 49(1):209-213. |
WU Yao, ZHANG Xiuling, XI Hailing, et al. Applicaton research progress of metal organic framework materials in the degradation of chemical warfare agents[J]. New Chemical Materials, 2021, 49(1):209-213. | |
[46] |
LEE D T, JAMIR J D, PETERSON G W, et al. Protective fabrics: metal-organic framework textiles for rapid photocatalytic sulfur mustard simulant detoxification[J]. Matter, 2020, 2(2):404-415.
doi: 10.1016/j.matt.2019.11.005 |
[47] |
SHEN C, MAO Z, XU H, et al. Catalytic MOF-loaded cellulose sponge for rapid degradation of chemicalwarfare agents simulant[J]. Carbohydrate Polymers, 2019, 213:184-191.
doi: 10.1016/j.carbpol.2019.02.044 |
[48] |
SONG Y, CHAU J, SIRKAR K K, et al. Membrane-supported metal organic framework based nanopacked bed for protection against toxic vapors and gases[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2020.117406.
doi: 10.1016/j.seppur.2020.117406. |
[49] |
LARSSON A, QVARNSTROM J, LINDBERG S, et al. In vitro human skin decontamination efficacy of MOF-808 in decontamination lotion following exposure to the nerve agent VX[J]. Toxicology Letters, 2021, 339:32-38.
doi: 10.1016/j.toxlet.2020.12.014 |
[50] |
QI Y, HAN L, QI Y, et al. Anti-flavivirus activity of polyoxometalate[J]. Antiviral Research, 2020, 179: 104813.
doi: 10.1016/j.antiviral.2020.104813 |
[51] |
WU K, CHANG Y, WANG J. Preparation of polyoxometalate-doped aminosilane-modified silicate hybrid as a new barrier of chem-bio toxicant[J]. Journal of Inorganic Biochemistry, 2019. DOI: 10.1016/j.jinorgbio.2019.110788.
doi: 10.1016/j.jinorgbio.2019.110788. |
[52] |
FANG Y, XING C, LIU J, et al. Supermolecular film crosslinked by polyoxometalate and chitosan with superior antimicrobial effect[J]. International Journal of Biological Macromolecules, 2020, 154:732-738.
doi: 10.1016/j.ijbiomac.2020.03.139 |
[53] |
BURU C T, WASSON M C, FARHA O K. H5PV2Mo10O40 polyoxometalate encapsulated in NU- 1000 metal-organic framework for aerobic oxidation of a mustard gas simulant[J]. ACS Applied Nano Materials, 2020, 3(1):658-664.
doi: 10.1021/acsanm.9b02176 |
[54] |
MISHRA B, SHARMA S. Shape memory materials with reversible shape change and self-healing abilities: a review[J]. Materials Today: Proceedings, 2021, 44:4563-4568.
doi: 10.1016/j.matpr.2020.10.820 |
[55] | 郭靖, 高翔, 刘兰轩, 等. 复合材料用自修复微胶囊的研究进展[J]. 材料保护, 2019, 52(6):127-132. |
GUO Jing, GAO Xiang, LIU Lanxuan, et al. Research progress of self-healing microcapsules for composite materials[J]. Materials Protection, 2019, 52(6):127-132. | |
[56] |
LITINA C, AL-TABBAA A. First generation microcapsule-based self-healing cementitious construction repair materials[J]. Construction and Building Materials, 2020. DOI: 10.1016/j.conbuildmat.2020.119389.
doi: 10.1016/j.conbuildmat.2020.119389. |
[57] |
KLING S, CZIGANY T. Damage detection and self-repair in hollow glass fiber fabric-reinforced epoxy composites via fiber filling[J]. Composites Science and Technology, 2014, 99:82-88.
doi: 10.1016/j.compscitech.2014.05.020 |
[58] |
ZHOU F, ZHANG Y, ZHANG D, et al. Fabrication of robust and self-healing superhydrophobic PET fabrics based on profiled fiber structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2020.125686.
doi: 10.1016/j.colsurfa.2020.125686. |
[59] |
CANBAY C A, UNLU N. Production and characterization of shape memory polymeric nanocomposite materials[J]. Journal of Molecular Structure, 2021. DOI: 10.1016/j.molstruc.2020.129708.
doi: 10.1016/j.molstruc.2020.129708. |
[60] | 孙亚昕, 张秀玲, 习海玲, 等. 静电纺纳米纤维在化学战剂“防消一体化”中的研究进展[J]. 化工新型材料, 2021, 49(1):47-51. |
SUN Yaxin, ZHANG Xiuling, XI Hailing, et al. Research progress of electrospun nanofibers in the "integration of prevention and elimination" of chemical warfare agents[J]. New Chemical Materials, 2021, 49(1):47-51. | |
[61] |
LIU Z, SHANG S, CHIU K, et al. Fabrication of silk fibroin/poly(lactic-co-glycolic acid)/graphene oxide microfiber mat via electrospinning for protective fabric[J]. Materials Science and Engineering: C, 2020. DOI: 10.1016/j.msec.2019.110308.
doi: 10.1016/j.msec.2019.110308. |
[62] |
WANG S, POMERANTZ N L, DAI Z, et al. Polymer of intrinsic microporosity (PIM) based fibrous mat: combining particle filtration and rapid catalytic hydrolysis of chemical warfare agent simulants into a highly sorptive, breathable, and mechanically robust fiber matrix[J]. Materials Today Advances, 2020. DOI: 10.1016/j.mtadv.2020.100085.
doi: 10.1016/j.mtadv.2020.100085. |
[63] |
QIU F, XIA Y, WU T, et al. Rationally designed high-performance Zr(OH)4@PAN nanofibrous membrane for self-detoxification of mustard gas simulant under an ambient condition[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2020.117452.
doi: 10.1016/j.seppur.2020.117452. |
[64] |
SEO E, KIM H, BAE K, et al. Optimizing chemical and mechanical stability of catalytic nanofiber web for development of efficient detoxification cloths against CWAs[J]. Polymer, 2021. DOI: 10.1016/j.polymer.2020.123262
doi: 10.1016/j.polymer.2020.123262 |
[1] | HUANG Rui, XIAO Aimin. Research and development of special-care incontinence underwear based on temperature and humidity sensor [J]. Journal of Textile Research, 2022, 43(07): 141-148. |
[2] | MA Liang, LI Jun. Application progress in cold protective clothing based on multiple intelligent technologies [J]. Journal of Textile Research, 2022, 43(06): 206-214. |
[3] | ZHENG Lu, YAN Weixiong, HU Jueliang, HAN Shuguang. Balanced optimization of garment hybrid assembly line based on modularization [J]. Journal of Textile Research, 2022, 43(04): 140-146. |
[4] | SHEN Chunya, LEI Junjie, RU Xin, PENG Laihu, HU Xudong. Multi-objective large-scale dynamic scheduling for weaving workshops based on improved NSGAII [J]. Journal of Textile Research, 2022, 43(04): 74-83. |
[5] | JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121. |
[6] | RONG Kai, FAN Wei, WANG Qi, ZHANG Cong, YU Yang. Application progress of two-dimensional transitional metal carbon/nitrogen compound composite in field of intelligent wearable textiles [J]. Journal of Textile Research, 2021, 42(09): 10-16. |
[7] | FANG Jian, REN Song, ZHANG Chuanxiong, CHEN Qian, XIA Guangbo, GE Can. Electroactive fibrous materials for intelligent wearable textiles [J]. Journal of Textile Research, 2021, 42(09): 1-9. |
[8] | TANG Qian, ZHANG Bingbing, ZHENG Xiaoyu. Design of wearable intelligent monitoring clothing for infants [J]. Journal of Textile Research, 2021, 42(08): 156-160. |
[9] | YANG Zhengyan, XUE Wenliang, ZHANG Chuanxiong, DING Yi, MA Yanxue. Recommendations for user's bottoms matching based on generative adversarial networks [J]. Journal of Textile Research, 2021, 42(07): 164-168. |
[10] | XU Xuemei. Improved genetic algorithm for fabric formulation prediction based on simulated annealing algorithm [J]. Journal of Textile Research, 2021, 42(07): 123-128. |
[11] | WANG Hang, WANG Bingxin, NING Xin, QU Lijun, TIAN Mingwei. Research progress in conductive inks for inkjet printing and its application for intelligent electronic textiles [J]. Journal of Textile Research, 2021, 42(06): 189-197. |
[12] | WANG Xiaobo, QIAN Xiaoming, WANG Lijing, LIU Yongsheng, BAI He. Review on liquid cooling garment and its feasibility study in fire fighting [J]. Journal of Textile Research, 2021, 42(06): 198-207. |
[13] | LIANG Jiahao, WU Yingzhu, LIU Haidong, HUANG Meilin, CAI Ruiyan, ZHOU Junjian, XIE Quanpei. Preparation and properties of humidity-sensitive polyurethane fibers with surface electrostatic implantation and adhesion of grapheme [J]. Journal of Textile Research, 2021, 42(06): 63-70. |
[14] | DU Jinsong, YU Yayun, ZHAO Ni, XIE Ziang, FEI Zhonghua, PAN Jingshu. Evaluation modelling for maturity in intelligent manufacturing for multi-type clothing factories [J]. Journal of Textile Research, 2021, 42(05): 162-167. |
[15] | JIANG Zhaohui, LI Yonggui, YANG Zitao, GUO Zengge, ZHANG Zhanqi, QI Yuanzhang, JIN Jian. Research progress in graphene/polymer composite fibers and textiles [J]. Journal of Textile Research, 2021, 42(03): 175-180. |