Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (08): 95-100.doi: 10.13475/j.fzxb.20210309107

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Degumming of hemp fibers using Fenton method and fiber properties

SUN Ying1,2(), LI Duanxin1, YU Yang1, CHEN Jialin1, FAN Wanyue1   

  1. 1. College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, China
    2. Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar University, Qiqihar, Heilongjiang 161000, China
  • Received:2021-03-29 Revised:2022-04-30 Online:2022-08-15 Published:2022-08-24

Abstract:

In order to reduce the environmental pollution caused by the strong alkalinity in the degumming waste liquid in the textile industry, the Fenton method was used to degum the hemp skin fiber. Using residual gum rate, breaking strength, diameter, whiteness and fiber length as indicators, the effects of pH value, ferrous sulfate concentration, hydrogen peroxide concentration and temperature on the effect of hemp degumming process were discussed. The chemical structure and crystallinity changes of hemp fibers were analyzed by infrared spectrometer and X-ray diffraction analyzer, and the degumming effect of hemp fibers was examined by scanning electron microscope. The test results show that the optimum degumming process conditions are pH 6.0, ferrous sulfate mass concentration 10 g/L, hydrogen peroxide mass concentration 9 g/L, and temperature 80 ℃. Under the optimal process, the residual glue rate of the degummed fibers was 10.12%, the breaking strength was 32.453 cN, the fiber diameter was 29.745 μm, and the fiber length was 5.62 cm. It was found that Fenton method can effectively remove the gum of hemp fiber.

Key words: hemp fiber, Fenton method, degumming, pretreatment, mechanical property

CLC Number: 

  • TS102.224

Tab.1

Performance of degummed hemp fibers under different pH values"

pH值 断裂强力/cN 残胶率/% 直径/μm 白度/% 长度/cm
3 49.68 ± 1.50 19.75 ± 0.10 25.97 ± 0.4 22.55 ± 0.1 5.84 ± 0.02
5 53.50 ± 1.00 16.15 ± 0.51 30.54 ± 0.7 29.65 ± 0.5 5.79 ± 0.01
7 41.92 ± 1.50 20.70 ± 0.25 39.86 ± 0.2 43.57 ± 0.2 5.81 ± 0.02
9 27.97 ± 1.75 22.22 ± 0.27 36.31 ± 0.3 29.74 ± 0.3 5.72 ± 0.02
12 10.27 ± 0.45 20.32 ± 0.25 40.77 ± 0.5 60.19 ± 0.5 5.69 ± 0.03

Tab.2

Performance of degummed hemp fibers under different FeSO4·7H2O concentrations"

FeSO4·7H2O
质量浓度/(g·L–1)
断裂强力/cN 残胶率/% 直径/μm 白度/% 长度/cm
3 53.50 ± 1.0 14.15 ± 0.1 35.44 ± 0.5 29.65 ± 0.1 5.64 ± 0.02
5 34.29 ± 0.5 16.26 ± 0.2 27.85 ± 0.7 45.93 ± 0.5 5.72 ± 0.01
7 31.47 ± 0.5 14.43 ± 0.1 21.32 ± 0.6 29.10 ± 0.2 5.57 ± 0.02
10 42.14 ± 0.7 14.46 ± 0.1 15.68 ± 0.3 23.83 ± 0.3 5.76 ± 0.02
15 11.36 ± 0.6 13.71 ± 0.1 30.75 ± 0.2 31.35 ± 0.5 5.84 ± 0.01

Tab.3

Performance of degummed hemp fibers under different H2O2 concentrations"

H2O2质量
浓度/(g·L–1)
断裂强力/cN 残胶率/% 直径/μm 白度/% 长度/cm
4 31.97 ± 1.00 14.43 ± 0.10 36.97 ± 0.2 45.92 ± 0.5 5.81 ± 0.02
6 31.02 ± 1.00 12.79 ± 0.20 30.70 ± 0.3 32.83 ± 0.5 5.72 ± 0.01
8 45.00 ± 0.75 10.68 ± 0.20 28.15 ± 0.2 35.12 ± 0.2 5.64 ± 0.02
10 19.53 ± 1.00 11.65 ± 0.30 27.03 ± 0.9 36.47 ± 0.7 5.52 ± 0.20
15 35.54 ± 1.00 10.46 ± 0.25 18.99 ± 0.5 45.88 ± 0.5 5.41 ± 0.30

Tab.4

Performance of degummed hemp fibers under different temperatures"

温度/℃ 断裂强力/cN 残胶率/% 直径/μm 白度/% 长度/cm
50 59.35 ± 1.00 13.45 ± 0.10 24.67 ± 0.2 25.84 ± 0.5 5.74 ± 0.02
60 45.00 ± 1.00 10.68 ± 0.20 21.05 ± 0.3 26.47 ± 0.5 5.81 ± 0.01
70 46.09 ± 0.75 11.51 ± 0.20 18.94 ± 0.2 22.56 ± 0.2 5.79 ± 0.02
80 48.09 ± 0.75 12.33 ± 0.30 19.95 ± 0.9 29.21 ± 0.1 5.83 ± 0.02
90 29.29 ± 1.00 10.98 ± 0.25 16.34 ± 0.5 23.22 ± 0.5 5.71 ± 0.03

Tab.5

Performance of degummed hemp fibers under different time"

时间/min 断裂强力/cN 残胶率/% 直径/μm 白度/% 长度/cm
30 42.37 ± 1.00 21.37 ± 2.0 27.48 ± 0.2 37.49 ± 0.3 5.92 ± 0.04
45 27.65 ± 2.00 16.94 ± 1.0 22.34 ± 0.3 30.21 ± 0.1 5.83 ± 0.09
60 21.43 ± 1.00 10.42 ± 1.0 16.13 ± 0.1 23.64 ± 0.2 5.74 ± 0.02
75 14.53 ± 0.75 9.73 ± 0.9 14.91 ± 0.1 21.82 ± 0.1 5.71 ± 0.02
90 9.67 ± 0.50 8.94 ± 0.3 12.75 ± 0.2 20.13 ± 0.3 5.54 ± 0.03

Tab.6

Table of factors and levels of orthogonal test on degumming of hemp fibers"

水平 A
pH值
B
FeSO4·7H2O
质量浓度/
(g·L–1)
C
H2O2
质量浓度/
(g·L–1)
D
温度/℃
1 4 8 7 60
2 5 9 8 70
3 6 10 9 80

Tab.7

Orthogonal test data of hemp fibers degumming"

编号 A B C D E 残胶
率/%
断裂强
力/cN
直径/
μm
纤维长
度/cm
1 1 1 1 1 1 11.29 37.00 50.41 5.72
2 1 2 2 2 2 19.48 36.96 56.78 5.46
3 1 3 3 3 3 13.42 15.39 41.53 5.65
4 2 1 1 2 2 11.83 47.75 51.95 5.73
5 2 2 2 3 3 9.36 40.74 58.06 5.56
6 2 3 3 1 1 8.13 46.88 43.49 5.47
7 3 1 2 1 3 10.08 67.49 20.17 5.67
8 3 2 3 2 1 8.68 45.14 24.56 5.33
9 3 3 1 3 2 12.70 25.04 19.37 5.42
10 1 1 3 3 2 11.68 17.13 30.75 5.64
11 1 2 1 1 3 10.99 30.60 29.53 5.73
12 1 3 2 2 1 16.69 24.01 35.44 5.54
13 2 1 2 3 1 12.13 27.31 30.05 5.72
14 2 2 3 1 2 16.76 24.02 21.19 5.42
15 2 3 1 2 3 11.27 20.50 19.04 5.39
16 3 1 3 2 3 11.82 10.54 16.30 5.63
17 3 2 1 3 1 9.03 23.07 17.49 5.73
18 3 3 2 1 2 11.59 12.65 23.96 5.61

Tab.8

Table of range analysis of orthogonal test data of hemp fiber degumming"

指标 A B C D
K1 13.925 11.472 11.185 11.473
残胶率 K2 11.580 12.383 13.222 13.295
K3 10.650 12.300 11.748 11.387
R 3.275 0.911 2.037 1.908
K1 26.843 34.537 30.660 34.773
断裂强力 K2 34.533 33.422 34.860 30.817
K3 30.655 24.078 26.517 24.780
R 7.690 10.459 8.343 9.993
K1 40.740 33.272 31.298 31.458
直径 K2 37.297 34.602 37.410 34.012
K3 20.308 27.472 29.637 32.875
R 20.432 10.130 7.773 2.554
K1 5.623 5.685 5.62 5.603
长度 K2 5.548 5.538 5.593 5.513
K3 5.565 5.513 5.523 5.620
R 0.075 0.172 0.097 0.107

Tab.9

Properties and content of each component of hemp fiber before and after degumming treatment"

样品名称 残胶
率/%
断裂强
力/cN
直径/
μm
长度/
cm
纤维素
含量/%
木质素
含量/%
半纤维素
含量/%
果胶含
量/%
其他含
量/%
大麻原麻 100.030 120.457 6.00 49.63 18.98 19.32 6.79 5.28
处理后大麻 10.12 32.453 29.745 5.62 79.14 9.49 9.06 1.21 1.10

Fig.1

Infrared spectra of hemp fiber before and after degumming treatment"

Fig.2

XRD patterns of hemp fiber before and after degumming treatment"

Fig.3

SEM images of hemp fiber before(a)and after (b)degumming treatment (×2 000)"

[1] 刘宇, 王晓云. 大麻及甲壳素纤维抗菌针织物性能研究[J]. 针织工业, 2018(8): 23-27.
LIU Yu, WANG Xiaoyun. Properties study of anti-bacterial knitted fabric with hemp and chitin fiber[J]. Knitting Industries, 2018(8): 23-27.
[2] 张袁松, 谢吉祥, 李晓龙, 等. 基于闪爆-碱煮联合工艺的天然竹纤维提取[J]. 纺织学报, 2012, 33(10): 56-61.
ZHANG Yuansong, XIE Jixiang, LI Xiaolong, et al. Steam explosion and alkali boiling combined degumming of natural bamboo fiber[J]. Journal of Textile Research, 2012, 33(10): 56-61.
[3] 周腾腾, 费凡, 王俊, 等. 精细化工废水预处理工艺研究进展[J]. 广东化工, 2020, 47(20): 58-64.
ZHOU Tengteng, FEI Fan, WANG Jun, et al. Research progress on pretreatment technology of fine chemical wastewater[J]. Guangdong Chemical, 2020, 47(20): 58-64.
[4] 李魁, 钱江枰, 杨文秀, 等. Fenton法预处理制药园区尾水的试验研究[J]. 浙江化工, 2019, 50(12): 34-38.
LI Kui, QIAN Jiangping, YANG Wenxiu, et al. Experimental study on pretreatment of tail water of pharmaceutical park by Fenton method[J]. Zhejiang Chemical, 2019, 50(12): 34-38.
[5] ZHOU Jiajia, LI Zhaoling, YU Chongwen. Property of ramie fiber degummed with Fenton reagent[J]. Fibers and Polymers, 2017, 18(10):1891-1897.
doi: 10.1007/s12221-017-6489-0
[6] SONG Y, JIANG W, ZHANG Y, et al. Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and fenton oxidation treatment[J]. Cellulose, 2018, 25(9):1-14.
doi: 10.1007/s10570-017-1536-y
[7] 周佳佳, 郁崇文. Fenton试剂用于苎麻氧化脱胶的探究[J]. 东华大学学报(自然科学版), 2017, 43:191-197.
ZHOU Jiajia, YU Chongwen. Investigation of oxidation degumming of ramie using Fenton reagent[J]. Journal of Donghua University (Natural Science), 2017, 43:191-197.
[8] 张娴娴, 尹光志, 李东伟. Fenton试剂催化氧化法处理焦化废水的实验研究[J]. 矿业安全与环保, 2005(2):12- 13,17-81.
ZHANG Xianxian, YIN Guangzhi, LI Dongwei. Experimental study on catalytic oxidation method with fentong reagent for treatment of coking wastewater[J]. Mining Safety and Environmental Protection, 2005:12-13,17-81.
[9] 陈志冉, 祝丹丹. Fenton试剂氧化降解MC-LR影响因素分析[J]. 供水技术, 2011(5): 21-24.
CHEN Zhiran, ZHU Dandan. Influencing factors of MC-LR oxidation and degradation by Fenton method[J]. Water Supply Technology, 2011(5): 21-24.
[10] 杨健, 吴云涛, 邢美燕. 微电解-Fenton氧化处理难降解蒽醌染整废水试验[J]. 同济大学学报(自然科学版), 2005(12): 1635-1640.
YANG Jian, WU Yuntao, XING Meiyan. Treatment of refractory anthraquinone dyeing wastewater by micro-electrolysis and Fenton oxidation process[J]. Journal of Tongji University(Natural Science Edition), 2005(12): 1635-1640.
[11] 李雪原. Fenton/超声高级氧化法降解含吡啶废水的研究[D]. 南昌: 华东交通大学, 2018: 9-11.
LI Xueyuan. Fenton/ultrasound advanced oxidation method to degrade the study of pyridine wastewater[D]. Nanchang: East China Jiaotong University, 2018: 9-11.
[12] 李亚峰, 朱爱霞, 姚敬博, 等. UV/Fenton法处理废水中苯酚[J]. 沈阳建筑大学学报(自然科学版), 2008(4): 637-640.
LI Yafeng, ZHU Aixia, YAO Jingbo, et al. Experimental study on treatment of phenol in wastewater by UV/Fenton oxidation[J]. Journal of Shenyang Building University (Natural Science Edition), 2008(4): 637-640.
[13] 李百健, 吴超, 邵京. 柑橘皮果胶的制备及其脱色工艺[J]. 湖北农业科学, 2013, 52: 5816-5820.
LI Baijian, WU Chao, SHAO Jing. Process of Pectin extraction from orange peel and its decolorization[J]. Hubei Agricultural Science, 2013, 52: 5816-5820.
[1] GAO Feng, SUN Yanlin, XIAO Shunli, CHEN Wenxing, LÜ Wangyang. Microstructure and properties of polyester composite fibers with different drafting ratios [J]. Journal of Textile Research, 2022, 43(08): 34-39.
[2] HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28.
[3] QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36.
[4] LI Aiyuan, SHI Xinyu, YUE Wanfu, YOU Weiyun. Preparation and property of silk fibroin based hydrogel scaffolds [J]. Journal of Textile Research, 2022, 43(06): 44-48.
[5] SUN Huanwei, ZHANG Heng, CUI Jingqiang, ZHU Feichao, WANG Guofeng, SU Tianyang, ZHEN Qi. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process [J]. Journal of Textile Research, 2022, 43(06): 86-93.
[6] ZHAO Bobo, WANG Liang, LI Jingyu, WAN Gang, XIA Zhaopeng, LIU Yong. Preparation and properties of hexamethylenetetramine cross-linked phenolic fibers [J]. Journal of Textile Research, 2022, 43(05): 57-62.
[7] SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites [J]. Journal of Textile Research, 2022, 43(04): 68-73.
[8] ZHOU Tianbo, ZHENG Huanda, CAI Tao, YU Zuojun, WANG Licheng, ZHENG Laijiu. One-bath dyeing of polyester/cotton blended fabrics in supercritical CO2 with Reactive Disperse Yellow dye [J]. Journal of Textile Research, 2022, 43(03): 116-122.
[9] FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43.
[10] CHEN Yong, WU Jing, WANG Chaosheng, PAN Xiaohu, LI Naixiang, DAI Junming, WANG Huaping. Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-co-terephthalate) fiber [J]. Journal of Textile Research, 2022, 43(02): 37-43.
[11] MIN Xiaobao, PAN Zhijuan. Quality and performance of biomass fiber/pineapple leaf fiber multi-component blended yarn [J]. Journal of Textile Research, 2022, 43(01): 74-79.
[12] WANG Songli, WANG Meilin, ZHOU Xiang, LIU Zunfeng. Research progress of artificial spider silk and imitation spider silk fiber [J]. Journal of Textile Research, 2021, 42(12): 174-179.
[13] SONG Xueyang, ZHANG Yan, XU Chenggong, WANG Ping, RUAN Fangtao. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites [J]. Journal of Textile Research, 2021, 42(11): 84-88.
[14] HE Junyan, LI Mingfu, LIAN Wenwei, HUANG Tao, ZHANG Jin. Ultrasonic-assisted chemical degumming process for making pineapple leaf fiber [J]. Journal of Textile Research, 2021, 42(09): 83-89.
[15] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!