Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 203-211.doi: 10.13475/j.fzxb.20210309409

• Comprehensive Review • Previous Articles     Next Articles

Research progress of inorganic antibacterial fabrics

CAO Congcong1, TANG Longshi2, LIU Yuanjun1(), ZHAO Xiaoming1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Weifang Xunfang New Material Technology Co., Ltd., Weifang, Shandong 261000, China
  • Received:2021-03-29 Revised:2022-07-12 Online:2022-11-15 Published:2022-12-26
  • Contact: LIU Yuanjun E-mail:liuyuanjuntg@163.com

Abstract:

To gain an in-depth understanding of the advantages and disadvantages of inorganic antimicrobial agents and to prepare antimicrobial fabrics with improved performance, the relevant research progress was reviewed. The antimicrobial mechanisms of metal-based and photocatalytic inorganic antimicrobial agents were briefly introduced, and the research progress of silver-based, copper-based, zinc-based, and composite inorganic antimicrobial agents in the field of textiles was mainly introduced. Compared with other types of antimicrobial agents, inorganic antimicrobial agents have the advantages in strong broad-spectrum and are not easy to make bacteria resistant, but there are some problems in practical application, including silver antimicrobial agents being expensive, copper antimicrobial agents darker, zinc antimicrobial agents weaker and so on. By compounding with other antimicrobial agents, compound antimicrobial fabrics with excellent performance are possible to be achieved. The future research direction should be the development of multi-functional antibacterial fabrics with the characteristics of functional compounding, intelligence, and good comfort.

Key words: functional textile, antibacterial fabrics, antimicrobial mechanism, antimicrobial agent, metal ion, nanoparticle

CLC Number: 

  • TS194

Fig.1

Generation of titanium dioxide electrons and holes under illumination conditions"

Fig.2

Schematic for fabrication of Ag-citric acid (CA) cotton fabrics and the supposed linkage mode between silver nanoparticles(Ag NPs) and fabrics through CA"

Fig.3

Schematic diagram of synthetic steps of copper/silver/polydopamine polyester fabric"

[1] 辜经纬. 抗菌整理剂的设计合成及其在纺织品上的应用[D]. 深圳: 深圳大学, 2019: 13-14.
GU Jingwei. Design and synthesis of antibacterial finishing agents and its application on fabrics[D]. Shenzhen: Shenzhen University, 2019: 13-14.
[2] 包钰婷. 抗菌纺织品的发展现状[J]. 纺织报告, 2020, 39(8): 12-13.
BAO Yuting. Development status of antibacterial textiles[J]. Textile Reports, 2020, 39(8): 12-13.
[3] 贾琳, 王西贤, 陶文娟, 等. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(6): 14-20.
JIA Lin, WANG Xixian, TAO Wenjuan, et al. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes[J]. Journal of Textile Research, 2020, 41(6): 14-20.
[4] 麻晓霞, 裴阳阳, 雷云, 等. 负载型无机抗菌材料的研究进展[J]. 功能材料, 2017, 48 (9): 9038-9042.
MA Xiaoxia, PEI Yangyang, LEI Yun, et al. Research progress of supported inorganic antibacterial mater-ials[J]. Journal of Functional Materials, 2017, 48(9): 9038-9042.
[5] 孙晓萱, 高建新, 李杭, 等. 金属抗菌机理的研究进展[J]. 功能材料, 2020, 51(9): 9066-9071.
SUN Xiaoxuan, GAO Jianxin, LI Hang, et al. Research progress on antimicrobial mechanism of metals[J]. Journal of Functional Materials, 2020, 51(9): 9066-9071.
[6] ZHANG S, YANG C, REN G, et al. Study on behaviour and mechanism of Cu2+ion release from Cu bearing antibacterial stainless steel[J]. Materials Technology, 2015, 30(B2): B126-B132.
doi: 10.1179/1753555714Y.0000000236
[7] 裴阳阳. Cu2+/ZnO负载型抗菌材料的制备及抗菌性能研究[D]. 银川: 宁夏大学, 2017: 17-19.
PEI Yangyang. Preparation and antibacterial properties of Cu2+/ZnO supported antibacterial materials[D]. Yinchuan: Ningxia University, 2017: 17-19.
[8] 王晓岚. 金属离子的抗菌性能及其抗菌机理研究[D]. 广州: 华南理工大学, 2015: 19-22.
WANG Xiaolan. Study on antibacterial activity and mechanism of metal ions[D]. Guangzhou: South China University of Technology, 2015: 19-22.
[9] 王小娟. 抗菌剂的种类及其在纺织品上的应用[J]. 纺织科技进展, 2017(6): 21-24.
WANG Xiaojuan. Types of antibacterial agents and their application in textiles[J]. Progress in Textile Science & Technology, 2017(6): 21-24.
[10] 马超, 吴瑛. 抗菌剂抗菌机理简述[J]. 中国酿造, 2016, 35(1): 5-9.
MA Chao, WU Ying. Antibacterial mechanism of antibacterial agents[J]. China Brewing, 2016, 35(1): 5-9.
[11] 陈美梅, 郭荣辉. 抗菌材料的研究进展[J]. 纺织科学与工程学报, 2019, 36(1): 153-157.
CHEN Meimei, GUO Ronghui. Research progress of antibacterial materials[J]. Journal of Textile Science and Engineering, 2019, 36(1): 153-157.
[12] 龚兰轩. Cu/ZnO-SiO2复合抗菌改性聚酯纤维的制备及其性能研究[D]. 上海: 东华大学, 2020: 15-16.
GONG Lanxuan. Preparation and properties of Cu/ZnO-SiO2 composite antibacterial modified polyester fiber[D]. Shanghai: Donghua University, 2020: 15-16.
[13] 王瑶, 王瑜, 程昱, 等. 纳米银粒径与抗细菌性能的关系[J]. 中国皮革, 2016, 45(5):1-4.
WANG Yao, WANG Yu, CHENG Yu, et al. Antibacterial properties of different sizes of nano- sliver to bacteria[J]. China Leather, 2016, 45(5): 1-4.
[14] SHE B X, WAN X J, TANG J N, et al. Size-and morphology-dependent antibacterial properties of cuprous oxide nanoparticle and their synergistic antibacterial effect[J]. Science of Advanced Materials, 2016, 8(5): 1074-1078.
doi: 10.1166/sam.2016.2696
[15] 金万慧, 梅帆, 何力. 纳米银抗菌防臭纺织品的检测及银的释放行为[J]. 印染助剂, 2021, 38(12): 57-60.
JIN Wanhui, MEI Fan, HE Li. Release of nano sliver in the antibacterial and deodorization textiles[J]. Textile Auxiliaries, 2021, 38(12): 57-60.
[16] UREYEN M E, ASLAN C. Determination of silver release from antibacterial finished cotton and polyester fabrics into water[J]. Journal of The Textile Institute, 2017, 108(7): 1128-1135.
[17] 张艳艳, 詹璐瑶, 王培, 等. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
ZHANG Yanyan, ZHAN Luyao, WANG Pei, et al. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles[J]. Journal of Textile Research, 2020, 41(11): 174-180.
doi: 10.1177/004051757104100215
[18] 崔继方, 吴卫华. 银系无机抗菌剂的发展及应用研究[J]. 陶瓷, 2016(9): 9-12.
CUI Jifang, WU Weihua. Development of Ag-type inorganic antibacterial agents and its application[J]. Ceramics, 2016(9):9-12.
[19] 徐思峻. 载银粘胶纤维的制备及其吸附释放性能研究[D]. 苏州: 苏州大学, 2013: 5-9.
XU Sijun. Fabrication of silver treated viscose fiber and evaluation of their adsorption and release proper-ties[D]. Suzhou: Soochow University, 2013: 5-9.
[20] 沈金科. 抗菌PTT纤维的制备及性能研究[D]. 杭州: 浙工理工大学, 2014: 4-5.
SHEN Jinke. Preparation and properties studies of antibacterial poly(trimethylene terephthalate) fila-ment[D]. Hangzhou: Zhejiang Sci-Tech University, 2014: 4-5.
[21] 朱炯霖, 李红, 秦圆, 等. 棉织物的纳米银多功能整理[J]. 精细化工, 2020, 37(6): 1274-1281.
ZHU Jionglin, LI Hong, QIN Yuan, et al. Nanosilver multifunctional finishing of cotton fabric[J]. Fine Chemicals, 2020, 37(6): 1274-1281.
[22] 赵兵, 黄小萃, 祁宁, 等. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(3): 188-196.
ZHAO Bing, HUANG Xiaocui, QI Ning, et al. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond[J]. Journal of Textile Research, 2020, 41(3): 188-196.
[23] ZHANG D S, CHEN L, ZANG C F, et al. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability[J]. Carbohydrate Polymers, 2013, 92(2): 2088-2094.
doi: 10.1016/j.carbpol.2012.11.100 pmid: 23399262
[24] WU Y P, YANG Y, ZHANG Z J, et al. Fabrication of cotton fabrics with durable antibacterial activities finishing by Ag nanoparticles[J]. Textile Research Journal, 2019, 89(5): 867-880.
doi: 10.1177/0040517518758002
[25] 孙通, 李双燕, 崔振华, 等. 真丝织物的氯菊酯纳米银抗菌整理[J]. 印染, 2021, 47(2): 12-16.
SUN Tong, LI Shuangyan, CUI Zhenhua, et al. Antibacterial finishing of silk fabric with permethrin-capped nano-silver[J]. China Dyeing & Finishing, 2021, 47(2): 12-16.
[26] 张艳, 姚平, 周谨, 等. 纳米银粒子的原位合成及对真丝织物的功能化整理[J]. 上海纺织科技, 2018, 46(9): 18-20,28.
ZHANG Yan, YAO Ping, ZHOU Jin, et al. Insitu synthesis of silver nanoparticles and its application for silk functionalization[J]. Shanghai Textile Science & Technology, 2018, 46(9): 18-20,28.
[27] RUPARELIA J R, CHATTERIEE A K, DUTTAGUPTA S P, et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles[J]. Acta Biomaterialia, 2008, 4(3): 707-716.
doi: 10.1016/j.actbio.2007.11.006 pmid: 18248860
[28] REN G G, HU D W, CHENG E W C, et al. Characterisation of copper oxide nanoparticles for antimicrobial applications[J]. International Journal of Antimicrobial Agents, 2009, 33(6): 587-590.
doi: 10.1016/j.ijantimicag.2008.12.004 pmid: 19195845
[29] ALZAHRANI K E, NIAZY A A, ALSWIELEH A M, et al. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles[J]. International Journal of Nanomedicine, 2018, 13: 77-87.
doi: 10.2147/IJN.S154218 pmid: 29317817
[30] WU W T, ZHAO W J, WU Y H, et al. Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J]. Applied Surface Science, 2019, 465: 279-287.
doi: 10.1016/j.apsusc.2018.09.184
[31] VALODKAR M, MODI S, PAL A, et al. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: a green approach[J]. Materials Research Bulletin, 2011, 46(3): 384-389.
doi: 10.1016/j.materresbull.2010.12.001
[32] KUDZIN M H, MROZINSKA Z, KACZMAREK A, et al. Deposition of copper on poly(lactide) non-woven fabrics by magnetron sputtering-fabrication of new multi-functional, antimicrobial composite materials[J]. Materials, 2020. DOI:10.3390/ma13183971.
doi: 10.3390/ma13183971
[33] 槐向兵, 黄磊. 铜离子改性聚丙烯腈织物的抗菌性能研究[J]. 棉纺织技术, 2019, 47(3): 31-34.
HUAI Xiangbing, HUANG Lei. Antibacterial property study of copper modified polyacrylonitrile fabric[J]. Cotton Textile Technology, 2019, 47(3): 31-34.
[34] XU Q B, GU J Y, ZHAO Y, et al. Antibacterial cotton fabric with enhanced durability prepared using L-cysteine and silver nanoparticles[J]. Fibers and Polymers, 2017, 18(11): 2204-2211.
doi: 10.1007/s12221-017-7567-z
[35] XU Q B, DUAN P P, ZHANG Y Y, et al. Double protect copper nanoparticles loaded on lcysteine modified cotton fabric with durable antibacterial properties[J]. Fibers and Polymers, 2018, 19(11): 2324-2334.
doi: 10.1007/s12221-018-8621-1
[36] TURAKHIA B, DIVAKARA M B, SANTOSH M S, et al. Green synthesis of copper oxide nanoparticles: a promising approach in the development of antibacterial textiles[J]. Journal of Coatings Technology and Research, 2020, 17(2): 531-540.
doi: 10.1007/s11998-019-00303-5
[37] 周馨悦, 徐井华, 刘星雨, 等. 纳米氧化锌在抗菌材料中的应用[J]. 云南化工, 2019, 46(4): 144-145.
ZHOU Xinyue, XU Jinghua, LIU Xingyu, et al. Application of nano zinc oxide in antimicrobial mater-ials[J]. Yunnan Chemical Technology, 2019, 46(4): 144-145.
[38] KUMAR R, UMAR A, KUMAR G, et al. Antimicrobial properties of ZnO nanomaterials: a review[J]. Ceramics International, 2017, 43(5): 3940-3961.
doi: 10.1016/j.ceramint.2016.12.062
[39] GHARPURE S, ANKAMWAR B. Synthesis and Antimicrobial properties of Zinc oxide nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(10): 5977-5996.
doi: 10.1166/jnn.2020.18707 pmid: 32384943
[40] KEAWKHONG N, SRIPANOM L, KAEWCHUAY N, et al. Synthesis and characterisation of ZnO nanoparticles for production of antimicrobial textiles[J]. Advanced Materials Research, 2015, 1131: 75-78.
doi: 10.4028/www.scientific.net/AMR.1131.75
[41] 冯俊丹, 崔振华, 程德亮, 等. 纳米氧化锌对黏胶织物的抗菌防紫外整理研究[J]. 针织工业, 2020(11): 24-28.
FENG Jundan, CUI Zhenhua, CHENG Deliang, et al. Antibacterial and UV-resistant finishing of viscose fabric with nano-ZnO[J]. Knitting Industries, 2020(11): 24-28.
[42] NOORIAN S A, HEMMATINEJAD N, NAVARRO J A R. Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities[J]. International Journal of Biological Macromolecules, 2020, 154: 1215-1226.
doi: S0141-8130(19)36606-1 pmid: 31730954
[43] 李丽艳, 郑敏, 常朱宁子, 等. 纳米氧化锌原位改性涤纶染色及抗菌性能研究[J]. 针织工业, 2020(12): 36-39.
LI Liyan, ZHENG Min, CHANG Zhuningzi, et al. Dyeing and anti-bacterial properties of in-situ modified polyester with nano-zinc oxide[J]. Knitting Industries, 2020(12): 36-39.
[44] AGRAWAL N, TAN J S J, LOW P S, et al. Green synthesis of robust superhydrophobic antibacterial and UV-blocking cotton fabrics by a dual-stage silanization approach[J]. Advanced Materials Interfaces, 2019. DOI:10.1002/admi.201900032.
doi: 10.1002/admi.201900032
[45] 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9): 170-179.
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress of antibacterial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179.
[46] 孙璇. 疏水性纤维的石墨烯整理及其表面功能化[D]. 天津: 天津工业大学, 2019: 3-4.
SUN Xuan. Graphene finishing and surface functionalization of hydrophobic fibers[D]. Tianjin: Tiangong University, 2019: 3-4.
[47] 张勇, 李桢. 石墨烯及氧化石墨烯在纺织领域的抗菌应用[J]. 棉纺织技术, 2020, 48(9): 75-79.
ZHANG Yong, LI Zhen. Antibacterial application of graphene and graphene oxide in textile field[J]. Cotton Textile Technology, 2020, 48(9): 75-79.
[48] 黄小云, 陈林云, 吴玉峰, 等. 天然抗菌防螨针织面料的开发[J]. 针织工业, 2018(6): 27-30.
HUANG Xiaoyun, CHEN Linyun, WU Yufeng, et al. Development of natural antibacterial anti-mite knitted fabric[J]. Knitting Industries, 2018(6): 27-30.
[49] OUADIL B, AMADINE O, ESSAMLALI Y, et al. A new route for the preparation of hydrophobic and antibacterial textiles fabrics using Ag-loaded graphene nanocomposite[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2019. DOI:10.1016/j.colsurfa.2019.123713.
doi: 10.1016/j.colsurfa.2019.123713
[50] 梁小玲. 高性能石墨烯材料在纺织领域的应用进展[J]. 纺织科技进展, 2020(7):26-29.
LIANG Xiaoling. Application progress of high-performance graphene materials in textile field[J]. Progress in Textile Science & Technology, 2020(7): 26-29.
[51] 卜聃琳. 高分子改性氧化石墨烯及其水凝胶复合材料的制备和抗菌性能研究[D]. 长春: 长春工业大学, 2021: 5-6.
BU Danlin. Preparation and antibacterial properties of polymer modified graphene oxide and itshydrogel composites[D]. Changchun: Changchun University of Technology, 2021: 5-6.
[52] YAGHOUBIDOUST F, SALIMI E. A simple method for the preparation of antibacterial cotton fabrics by coating graphene oxide nanosheets[J]. Fibers and Polymers, 2019, 20(6): 1155-1160.
doi: 10.1007/s12221-019-8540-1
[53] GAO N, CHEN Y J, JIANG J. Ag@Fe2O3-GO nanocomposites prepared by a phase transfer method with long-term antibacterial property[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11307-11314.
[54] YU W, LI X, HE J X, et al. Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles[J]. Journal of Colloid and Interface Science, 2021, 584:164-173.
doi: 10.1016/j.jcis.2020.09.092 pmid: 33069016
[55] ANSARI M, SAJJADI S A, SAHEBIAN S, et al. Photocatalytic and antibacterial activity of silver/titanium dioxide/zinc oxide nanoparticles coated on cotton fabrics[J]. Chemistry Select, 2020, 5(27): 8370-8378.
[56] WANG K, MA Q, ZHANG Y M, et al. Ag NPs-assisted synthesis of stable Cu NPs on PET fabrics for antibacterial and electromagnetic shielding performance[J]. Polymers, 2020. DOI:10.3390/polym12040783.
doi: 10.3390/polym12040783
[1] ZHANG Chudan, WANG Rui, WANG Wenqing, LIU Yanyan, CHEN Rui. Synthesis and properties of cationic modified flame retardant polyester fabrics [J]. Journal of Textile Research, 2022, 43(12): 109-117.
[2] ZHAO Lunyu, SUI Xiaofeng, MAO Zhiping, LI Weidong, FENG Xueling. Research progress in aerogel materials application for textiles [J]. Journal of Textile Research, 2022, 43(12): 181-189.
[3] FANG Yinchun, CHEN Lüxin, LI Junwei. Preparation and properties of flame retardant and superhydrophobic polyester/cotton fabrics [J]. Journal of Textile Research, 2022, 43(11): 113-118.
[4] CHEN Junxian, LI Weiping, FU Qixuan, FENG Xinxing, ZHANG Hua. Preparation and properties of aramid/flame retardant viscose/flame retardant polyamide blended fabrics [J]. Journal of Textile Research, 2022, 43(09): 107-114.
[5] YANG Huiyu, ZHOU Jingyi, DUAN Zijian, XU Weilin, DENG Bo, LIU Xin. Research progress in textile surface multifunctional modification by atomic layer deposition [J]. Journal of Textile Research, 2022, 43(09): 195-202.
[6] XIONG Tanping, TAN Fei, HUANG Cheng, YAN Kelu, ZOU Ni, WANG Zheng, YE Jingping, JI Bolin. Antimicrobial properties of chloramine-grafted polyester/polyamide microfiber knitted fabrics [J]. Journal of Textile Research, 2022, 43(08): 101-106.
[7] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[8] NAN Qingqing, ZENG Qinghong, YUAN Jingxuan, WANG Xiaoqin, ZHENG Zhaozhu, LI Gang. Advances on antibacterial textiles [J]. Journal of Textile Research, 2022, 43(06): 197-205.
[9] HUANG Yiting, CHENG Xianwei, GUAN Jinping, CHEN Guoqiang. Phosphorus/nitrogen-containing flame retardant for flame retardant finishing of polyester/cotton blended fabric [J]. Journal of Textile Research, 2022, 43(06): 94-99.
[10] LIN Tiantian, YANG Dan, GAO Weihong, ZHANG Zhiyue, ZHAO Xiaoyan. Low angle-dependent structurally coloured films over full visible spectrum [J]. Journal of Textile Research, 2022, 43(02): 149-155.
[11] JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121.
[12] LIU Xinhua, LIU Hailong, FANG Yinchun, YAN Peng, HOU Guangkai. Preparation and properties of flame retardant polyester/cotton blended fabrics by layer-by-layer assemblying polyethylenimine/phytic acid [J]. Journal of Textile Research, 2021, 42(11): 103-109.
[13] WANG Zhihui, XU Yufei, GUO Haoyu, ZHANG Kanglei, PANG Xingchen, NIE Xiaolin, ZHUGE Jian, WEI Qufu. Progress in application of photodynamic antibacterial technology for textiles [J]. Journal of Textile Research, 2021, 42(11): 187-196.
[14] YANG Qun, LIANG Qi, WANG Liming, DAI Zhengwei. Thermo-sensitive hydrophilic-hydrophobic transition and moisture permeability of poly-N-isopropylacrylamide/polyurethane gradient composite membrane [J]. Journal of Textile Research, 2021, 42(09): 17-23.
[15] ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .