Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 44-49.doi: 10.13475/j.fzxb.20210310006

• Fiber Materials • Previous Articles     Next Articles

Effect of thermal conductive structure on non-isothermal crystallization behavior of polyethylene terephthalate

XU Xiaotong1, JIANG Zhenlin1,2,3(), ZHENG Qinchao1, ZHU Keyu1, WANG Chaosheng3, KE Fuyou3   

  1. 1. School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    2. Research Center for Advanced Mirco-and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China
    3. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2021-03-29 Revised:2021-10-21 Online:2022-03-15 Published:2022-03-29
  • Contact: JIANG Zhenlin E-mail:jiangzhenlin@sues.edu.cn

Abstract:

The thermal conductive structure in polyethylene terephthalate will affect the processability of fiber materials and textiles, and various properties of the fiber. Polyethylene terephthalate (PET) composite containing carbon nanotubes (CNTs) and graphene (GR) was prepared by fusion mixing, and the non-isothermal crystallization kinetics of PET was studied by differential scanning calorimetry. The results show that doped carbon nanotubes and graphene act as nucleators in PET, and the increase in their mass fraction promotes the crystallization temperature, crystallization rate and crystallinity. The crystalline activation energies of pure PET, PETs doped with carbon nanotubes and graphene were -95.23、-160.27 and -176. 79 kJ/mol, respectively, calculated using Kissinger method. The increase of the absolute value of crystallization activation energy promotes the movement of macromolecule chain and accelerates the exothermic process of crystallization. The results show that CNTs and GR promote the crystallization rate and nucleation of PET, and the 2-D sheet thermal conductivity of graphene favors PET crystallization.

Key words: polyethylene terephthalate, graphene, carbon nanotube, non-isothermal crystallization kinetics, thermal conductive structure

CLC Number: 

  • TQ342

Fig.1

Non-isothermal crystallization curves of PET、PET/CNTs and PET/GR"

Tab.1

Non-isothermal crystallization parameters of PET,PET/CNTs and PET/GR"

样品名称 Φ/(℃·min-1) T0/℃ Te/℃ Tp/℃ t/min t1/2/min ΔHc/(J·g-1)
PET 10 206.29 178.71 196.29 28.12 24.12 44.88
20 197.66 159.33 183.35 23.04 21.20 41.66
30 192.28 142.29 174.27 21.44 19.45 42.20
PET/CNTs 10 212.55 193.47 205.76 26.51 23.13 44.40
20 204.54 177.06 195.57 22.33 19.61 42.70
30 202.20 173.73 193.26 19.11 18.38 44.00
PET/GR 10 209.21 188.29 202.64 26.23 23.09 44.28
20 202.75 179.17 195.10 21.67 19.64 44.97
30 198.66 173.47 190.70 19.86 18.52 44.83

Fig.2

Relationship between relative crystallinity and temperature"

Fig.3

Relationship between relative crystallinity and time"

Fig.4

Ozawa index m(a)and lgK(T)(b) curves of PET,PET/CNTs and PET/GR at different temperatures"

Fig.5

Non-isothermal crystallization activation energy of PET,PET/CNTs and PET/GR"

Tab.2

Crystallization activation energy of CNTs/PET,GR/PET with different contents"

质量分数/% ΔE/(kJ·mol-1)
PET/CNTs PET/GR
0.25 -160.27 -176.79
1.00 -133.11 -187.32
2.00 -127.80 -132.65
[1] 叶静. PET/纳米矿物粒子纤维的结构与性能[J]. 纺织学报, 2009,30(1):22-25.
YE Jing. Structure and properties of PET/nano-mineral particle fibers[J]. Journal of Textile Research, 2009,30(1):22-25.
[2] 林启松, 江力, 汪凯, 等. 新型改性聚酯的制备及其性能[J]. 纺织学报, 2018,39(8):22-26.
LIN Qisong, JIANG Li, WANG Kai, et al. Preparation and properties of new modified polyester[J]. Journal of Textile Research, 2018,39(8):22-26.
[3] 徐阳, 王肖娜, 杜远之, 等. 静电和熔融纺丝法对PET纤维表面结构的影响[J]. 纺织学报, 2012,33(9):1-5.
XU Yang, WANG Xiaona, DU Yuanzhi, et al. Effect of electrostatic and melt spinning methods on the surface structure of PET fibers[J]. Journal of Textile Research, 2012,33(9):1-5.
doi: 10.1177/004051756303300101
[4] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020,41(3):100-105.
DING Fang, REN Xuehong. Flame retardant finishing of polyester fabric with phosphorus and nitrogen flame retardant[J]. Journal of Textile Research, 2020,41(3):100-105.
[5] 王利娜, 石素宇, 辛长征, 等. 聚酯/棕榈基多孔碳纤维杂化膜的结晶和力学性能[J]. 纺织学报, 2017,38(8):6-10.
WANG Lina, SHI Suyu, XIN Changzheng, et al. Crystallization and mechanical properties of polyester/palm-based porous carbon fiber hybrid films[J]. Journal of Textile Research, 2017,38(8):6-10.
[6] 李绍龙, 徐艺, 陈农田, 等. 利用Avrami和莫志深方法研究聚丁二酸丁二醇酯-聚丁二酸二甘醇酯多嵌段共聚物的非等温结晶动力学[J]. 材料导报, 2018,32(16):2882-2888, 2896.
LI Shaolong, XU Yi, CHEN Nongtian, et al. Non-isothermal crystallization kinetics of poly(butylene succinate)-b-poly(diethylene glycol succinate) mulitiblock copolymers by the Avrami and the Mo's methods exclusively[J]. Materials Review, 2018,32(16):2882-2888,2896.
[7] 韩霞, 郭英. PET/PE共混纤维纺丝组件的结构与性能[J]. 纺织学报, 2014,35(7):123-127.
HAN Xia, GUO Ying. Structure and properties of PET/PE blend fiber spinning assembly[J]. Journal of Textile Research, 2014,35(7):123-127.
[8] 陈咏, 王颖, 何峰, 等. 共聚型磷系阻燃聚酯聚合反应动力学及其性能[J]. 纺织学报, 2019,40(10):13-19.
CHEN Yong, WANG Ying, HE Feng, et al. Polymerization kinetics and properties of copolymerized phosphorous flame-retardant polyester[J]. Journal of Textile Research, 2019,40(10):13-19.
[9] 王佳乐, 陈晓勇, 郜澳龙, 等. 低密度聚乙烯/石墨烯纳米复合材料非等温结晶动力学[J]. 工程塑料应用, 2021,49(1):102-106,113.
WANG Jiale, CHEN Xiaoyong, GAO Aolong, et al. Non-isothermal crystallization kinetics of low density polyethylene/graphene nanocomposites[J]. Engineering Plastics Application, 2021,49(1):102-106,113.
[10] XU Q S, WANG C S, WANG B, et al. In situ polymerization and characterization of graphite nanoplatelet/poly(ethylene terephthalate)nanocomposites for construction of melt-spun fibers[J]. RSC Advances, 2017,7(53):33477-33485.
doi: 10.1039/C7RA04770C
[11] XIE F, LIANG H, REN X J, et al. Isothermal crystallization of PET/PTT/CNTs composites[J]. Adv Mater, 2013,4:750-752.
[12] COBURN N, DOUGLAS P, KAYA D, et al. Isothermal and non-isothermal crystallization kinetics of composites of poly(propylene)and MWCNTs[J]. Advanced Industrial and Engineering Polymer Research, 2018,1(1):99-110.
doi: 10.1016/j.aiepr.2018.06.001
[13] TUGAY Y, MEHMET K, GURALP O. Non-isothermal crystallization kinetics of poly (butylene succinate)(PBS)nanocomposites with different modified carbon nano-tubes[J]. Polymer, 2018,146:361-377.
doi: 10.1016/j.polymer.2018.05.060
[14] LIU F Y, XU C L, ZENG J B, et al. Non-isothermal crystallization kinetics of biodegradable poly (butylene succinate-co-diethylene glycol succinate)copolymers[J]. Thermochimica Acta, 2013,568:38-45.
doi: 10.1016/j.tca.2013.06.025
[15] GAO C H, JIAN X R, ZHANG B, et al. Effect of magnesium hydroxide sulfate hydrate whisker on non-isothermal crystallization kinetics of poly (butylene succinate)[J]. Thermochimica Acta, 2018,663:9-18.
doi: 10.1016/j.tca.2018.02.016
[16] JURGEN E K, SCHAWE. Identification of three groups of polymers regarding their non-isothermal crystallization kinetics[J]. Polymer, 2019,167:167-175.
doi: 10.1016/j.polymer.2019.02.011
[17] AMBROSI M, RAUDINO I, DIANEZ I M. Non-isothermal crystallization kinetics and morphology of poly(3-hydroxybutyrate)/pluronic blends[J]. European Polymer Journal, 2019,120:109189.
doi: 10.1016/j.eurpolymj.2019.08.016
[18] HOU Y B, QIU S L, HU Y, et al. Construction of bimetallic ZIF-derived Co-Ni LDHs on the surfaces of GO or CNTs with a recyclable method: toward reduced toxicity of gaseous thermal decomposition products of unsaturated polyester resin[J]. ACS Applied Materials & Interfaces, 2018,10(21):18359-18371.
[19] 姬洪, 宋明根, 薛勇, 等. 不同分子质量阻燃共聚酯的非等温结晶动力学[J]. 合成纤维, 2021,50(1):1-5.
JI Hong, SONG Minggen, XUE Yong, et al. Non-isothermal crystallization kinetics of flame-retardant copolyesters with different molecular weight[J]. Synthetic Fiber in China, 2021,50(1):1-5.
[20] 文健. 氧化石墨烯/尼龙6复合材料结晶动力学及增韧改性研究[D]. 广州:华南理工大学, 2019:1-30.
WEN Jian. Crystallization kinetics and toughening modification of graphene oxide/nylon 6 composites[D]. Guangzhou: South China University of Technology, 2019:1-30.
[1] TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70.
[2] WANG Rui, LIU Yanlin, LIU Yunyu, GU Weiwen, LIU Ziling, WEI Jianfei. Preparation and application of carbon dots with polyethylene terephthalate as precursor [J]. Journal of Textile Research, 2022, 43(02): 10-18.
[3] GUO Zijiao, LI Yue, ZHANG Rui, LU Zan. Preparation and properties of polyaniline/Ti3C2Tx/carbon nanotube composite fiber-based electrodes [J]. Journal of Textile Research, 2022, 43(02): 74-80.
[4] ZOU Lihua, YANG Li, LAN Chuntao, RUAN Fangtao, XU Zhenzhen. Electromagnetic shielding properties of graphene oxide/polypyrrole coated cotton fabric with layer-by-layer assembling method [J]. Journal of Textile Research, 2021, 42(12): 111-118.
[5] WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33.
[6] YU Rufang, HONG Xinghua, ZHU Chengyan, JIN Zimin, WAN Junmin. Electrical heating properties of fabrics coated by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(10): 126-131.
[7] WAN Zhenkai, JIA Minrui, BAO Weichen. Optimal configuration of embedded position and number of carbon nanotube yarns in 3-D braided composites [J]. Journal of Textile Research, 2021, 42(09): 76-82.
[8] KE Ying, ZHANG Haitang, ZHU Xiaohan, WANG Hongfu, WANG Min. Development and performance evaluation of aloft cleaning working suit based on electrical heating [J]. Journal of Textile Research, 2021, 42(08): 149-155.
[9] ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56.
[10] DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56.
[11] LIANG Jiahao, WU Yingzhu, LIU Haidong, HUANG Meilin, CAI Ruiyan, ZHOU Junjian, XIE Quanpei. Preparation and properties of humidity-sensitive polyurethane fibers with surface electrostatic implantation and adhesion of grapheme [J]. Journal of Textile Research, 2021, 42(06): 63-70.
[12] TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers [J]. Journal of Textile Research, 2021, 42(05): 168-177.
[13] WANG Lu, HAN Xue, LOU Lin, HE Linghua, ZHOU Xiaohong. Development of electric-heating protective gloves and ergonomic experiments under extreme cold environment [J]. Journal of Textile Research, 2021, 42(05): 150-154.
[14] ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126.
[15] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!