Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 44-48.doi: 10.13475/j.fzxb.20210310306
• Fiber Materials • Previous Articles Next Articles
LI Aiyuan, SHI Xinyu, YUE Wanfu(), YOU Weiyun
CLC Number:
[1] | CIMA L G, VACANTI J P, VACANTI C, et al. Tissue engineering by cell transplantation using degradable polymer substrates[J]. Journal of Biotechnology Engineering, 1991, 113(2): 143-51. |
[2] |
LI A Y, SHI X Y, YOU W Y, et al. Muscle-derived stem cells in silk fibroin hydrogels promotes muscle regeneration and angiogenesis in sheep models: an experimental study[J]. European Review for Medical and Pharmacological Sciences, 2022, 26(3): 787-798.
doi: 10.26355/eurrev_202202_27987 pmid: 35179745 |
[3] |
LANGER R. Tissue engineering: a new field and its challenges[J]. Pharmaceutical Research, 1997, 14(7): 840-841.
doi: 10.1023/A:1012131329148 |
[4] |
YOU R, ZHANG J, GU S, et al. Regenerated egg white/silk fibroin composite films for biomedical applications[J]. Mater Sci Eng C: Mater Biol Appl, 2017, 79: 430-435.
doi: 10.1016/j.msec.2017.05.063 |
[5] |
CIOCCI M, CACCIOTTI I, SELIKTAR D, et al. Injectable silk fibroin hydrogels functionalized with microspheres as adult stem cells-carrier systems[J]. Int J Biol Macromol, 2018, 108: 960-971.
doi: 10.1016/j.ijbiomac.2017.11.013 |
[6] |
NGUYEN T P, NGUYEN Q V, NGUYEN V H, et al. Silk fibroin-based biomaterials for biomedical applications: a review[J]. Polymers (Basel), 2019, 11(12): 1993.
doi: 10.3390/polym11121993 |
[7] |
EGAN G, PHUAGKHAOPONG S, MATTHEW S A L, et al. Impact of silk hydrogel secondary structure on hydrogel formation, silk leaching and in vitro res-ponse[J]. Scientific Reports, 2022, 12(1):24-51.
doi: 10.1038/s41598-021-03573-5 |
[8] |
CHOUHAN D, MANDAL B B. Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside[J]. Acta Biomater, 2020, 103: 24-51.
doi: 10.1016/j.actbio.2019.11.050 |
[9] |
YUAN T, LI Z, ZHANG Y, et al. Injectable ultrasonication-induced silk fibroin hydrogel for cartilage repair and regeneration[J]. Tissue Eng Part A, 2021, 27(17/18): 1213-1224.
doi: 10.1089/ten.tea.2020.0323 |
[10] |
WANG Y, RUDYM D D, WALSH A, et al. In vivo degradation of three-dimensional silk fibroin scaff-olds[J]. Biomaterials, 2008, 29(24/25): 3415-28.
doi: 10.1016/j.biomaterials.2008.05.002 |
[11] |
WANG Y, BELLA E, LEE C S, et al. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration[J]. Biomaterials, 2010, 31(17): 4672-4681.
doi: 10.1016/j.biomaterials.2010.02.006 |
[12] |
YOSHIMIZU H. Preparation and characterization of silk fibroin powder and its application to enzyme immobilization[J]. J Appl Polym Sci, 1990, 40: 127-34.
doi: 10.1002/app.1990.070400111 |
[13] |
MIN B M, LEE G, KIM S H, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro[J]. Biomaterials, 2004, 25(7/8): 1289-1297.
doi: 10.1016/j.biomaterials.2003.08.045 |
[14] |
LI C, VEPARI C, JIN H J, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(16): 3115-3124.
doi: 10.1016/j.biomaterials.2006.01.022 |
[15] |
MALAFAYA P B, SILVA G A, REIS R L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications[J]. Adv Drug Deliv Rev, 2007, 59(4/5): 207-233.
doi: 10.1016/j.addr.2007.03.012 |
[16] |
WANG Y, KIM U J, BLASIOLI D J, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells[J]. Biomaterials, 2005, 26(34): 7082-7094.
doi: 10.1016/j.biomaterials.2005.05.022 |
[17] | RIBEIRO V P, PINA S, OLIVEIRA J M, et al. Silk fibroin-based hydrogels and scaffolds for osteochondral repair and regeneration[J]. Adv Exp Med Biol, 2018, 1058: 305-325. |
[18] | BAKHSHANDEH B, ZARRINTAJ P, OFTADEH M O, et al. Tissue engineering; strategies, tissues, and biomaterials[J]. Biotechnology Genetic Engineering Revision, 2017, 33(2): 144-172. |
[19] |
SOHN S, STREY H H, GIDO S P. Phase behavior and hydration of silk fibroin[J]. Biomacromolecules, 2004, 5(3): 751-757.
doi: 10.1021/bm0343693 |
[20] |
YUCEL T, LOVETT M L, KAPLAN D L. Silk-based biomaterials for sustained drug delivery[J]. J Control Release, 2014, 190: 381-397.
doi: 10.1016/j.jconrel.2014.05.059 |
[21] |
BHATTACHARJEE P, KUNDU B, NASKAR D, et al. Silk scaffolds in bone tissue engineering: an over-view[J]. Acta Biomater, 2017, 63: 1-17.
doi: 10.1016/j.actbio.2017.09.027 |
[1] | GU Zhanghong, YAO Xiang, WANG Jinsi, ZHANG Yaopeng. Preparation and properties of single-layer and parallel silk fibroin fiber patterns with cell adhesion contrast properties [J]. Journal of Textile Research, 2022, 43(05): 1-6. |
[2] | LEI Caihong, YU Linshuang, ZHU Hailin, ZHENG Tao, CHEN Jianyong. Hemostasis properties of silk fibroin materials under different types of hydrolysis [J]. Journal of Textile Research, 2022, 43(04): 15-19. |
[3] | WANG Chenmeizi, WANG Ling, ZHANG Qingle, WANG Ying, XIA Xin. Preparation and property of composite hydrogel nonwoven based fresh-keeping material [J]. Journal of Textile Research, 2022, 43(03): 132-138. |
[4] | ZHANG Tao, WANG Fuping, CHEN Guobao, WU Jiyu, PANG Yani, CHEN Zhongmin. Preparation and performance of chitosan-based antibacterial gel [J]. Journal of Textile Research, 2022, 43(03): 71-77. |
[5] | FANG Shuaijun, ZHENG Peixiao, CHENG Shuangjuan, LI Huanhuan, QIAN Hongfei. Establishment of mathematical model and quantitative analysis for grafting rate of methylacrylamide grafted silk [J]. Journal of Textile Research, 2022, 43(02): 156-161. |
[6] | YAO Ruotong, ZHAO Jingyuan, YAN Yixin, DUAN Lirong, WANG Tian, YAN Jia, ZHANG Shujun, LI Gang. Fabrication of novel biodegradable braided nerve grafts for nerve regeneration [J]. Journal of Textile Research, 2022, 43(02): 125-131. |
[7] | WU Jiayin, WANG Hanchen, HUANG Biao, LU Qilin. Fabrication of fluorescent cellulose nanocrystals hydrogels for chloride ion response [J]. Journal of Textile Research, 2022, 43(02): 44-52. |
[8] | MIN Xiaobao, PAN Zhijuan. Quality and performance of biomass fiber/pineapple leaf fiber multi-component blended yarn [J]. Journal of Textile Research, 2022, 43(01): 74-79. |
[9] | WANG Songli, WANG Meilin, ZHOU Xiang, LIU Zunfeng. Research progress of artificial spider silk and imitation spider silk fiber [J]. Journal of Textile Research, 2021, 42(12): 174-179. |
[10] | PENG Xi, TU Yongjian, ZHOU Jiu. Design principle and method for gradient weft-backed structure with 2∶1 weft arrangement [J]. Journal of Textile Research, 2021, 42(12): 63-69. |
[11] | JIANG Yulin, WANG Hui, ZHANG Keqin. Research progress of silk fibroin-based hydrogel bioinks for 3D bio-printing [J]. Journal of Textile Research, 2021, 42(11): 1-8. |
[12] | LI Feng, YANG Jiahao, LAI Gengchang, WANG Jiannan, XU Jianmei. Research progress of polymer embolic microspheres [J]. Journal of Textile Research, 2021, 42(10): 180-189. |
[13] | YU Zhicai, LIU Jinru, HE Hualing, MA Shengnan, JIANG Huiyu. Research and application progress in fire retardant fabric based on polymeric hydrogel [J]. Journal of Textile Research, 2021, 42(09): 180-186. |
[14] | SUN Yusheng, ZUO Baoqi. Research progress of high-molecular polymer material for bone defect repair [J]. Journal of Textile Research, 2021, 42(08): 175-184. |
[15] | LIU Hao, LU Minglei, HUANG Xiaowei, WANG Na, WANG Xuefang, NING Xin, MING Jinfa. Preparation and characterization of silk fibroin hydrogel in acid-alcohol system [J]. Journal of Textile Research, 2021, 42(08): 41-48. |
|