Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 89-94.doi: 10.13475/j.fzxb.20210310406

• Textile Engineering • Previous Articles     Next Articles

Fast image retrieval of colored spun fabrics on high-level semantic features

GU Qian1,2, YUAN Li1,2(), YANG Yali1, LIU Junping3   

  1. 1. School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Hubei Functional Fiber Processing and Testing Engineering Technology Research Center, Wuhan Textile University,Wuhan, Hubei 430200, China
    3. School of Mathematics and Computer, Wuhan Textile University,Wuhan, Hubei 430200, China
  • Received:2021-03-20 Revised:2021-11-21 Online:2022-03-15 Published:2022-03-29
  • Contact: YUAN Li E-mail:yuanli@wtu.edu.cn

Abstract:

In order to improve the effectiveness and execution efficiency of image retrieval systems for colored spun fabrics, an image retrieval system based on low-order features and high-level semantic features was established. The system uses the deep convolution neural network to extract the style semantic features of colored spun fabrics, and then constructs a hierarchical retrieval system by fusing low-order texture features such as local binary pattern and directional gradient histogram. Binary hash coding was used to reduce the dimension of the extracted high-dimensional feature vector. The results showed that for the retrieval of the 9 sample images of colored spun fabrics with different texture styles, the Top-10 recall and average accuracy of the system reached 97.37% and 87.54%, respectively, indicating good effectiveness and robustness. Compared with the direct use of advanced semantic features, the retrieval time of the proposed method is about 750 times faster.

Key words: colored spun fabric, image retrieval, high-level semantic feature, binary hash code, hierarchical characteristic

CLC Number: 

  • TS101.9

Fig.1

Low order characteristics of colored spun fabrics. (a) Original image of fabric; (b) LBP pseudo gray spectrum; (c) HOG feature map"

Fig.2

Advanced semantic feature extraction"

Tab.1

Sample parameter"

样本名称 线密度/tex 面密度/(g·m-2) 样本数量
春芽纱 22.5 170 56
春芽竹节纱 18.2 160 170
幻影纱 19.5 160 64
迷你幻影纱 22.5 170 64
霓彩纱 19.5 160 60
赛络色纺纱 19.5 160 40
手纺纱 29.2 175 160
水蚊蝇带纱 36.5 190 10
星彩纱 18.2 140 60

Fig.3

Sample drawing of colored spun fabrics. (a)Budding heather yarn;(b)Home spun heather yarn;(c)Mirage mini heather yarn;(d)Siro heather yarn"

Tab.2

Hash codes length and Top-10 search results"

哈希码长度 查全率/% 平均准确率/%
16 90.37 46.58
32 91.46 48.12
64 94.52 49.36
128 96.03 50.88
256 98.87 50.97

Tab.3

LBP operator parameters and Top-10 search results"

LBP算子参数 查全率/% 平均准确率/%
P R
8 1 94.68 81.62
8 2 97.04 83.77
16 1 96.41 79.34
16 2 96.67 77.57

Tab.4

HOG operator parameters and Top-10 search results"

HOG算子参数 查全率/% 平均准确率/%
c b
36 4 94.03 82.77
36 9 93.85 80.68
64 4 96.57 83.32
64 9 95.76 82.95

Tab.5

Search experimental results"

样本名称 查全率/% 平均准确率/%
春芽纱 97.55 87.32
春芽竹节纱 98.21 89.28
幻影纱 97.56 87.78
迷你幻影纱 97.85 88.14
霓彩纱 97.63 87.03
赛络色纺纱 96.11 86.95
手纺纱 98.37 89.47
水蚊蝇带纱 95.21 85.61
星彩纱 97.84 86.28

Fig.4

Retrieval results of similar colored spun fabrics. (a) Retrieval image; (b) Similarity Top-10 result image"

Fig.5

Colored spun fabric wrinkle image"

Fig.6

Retrieval results of abnormal colored spun fabrics. (a) Retrieval image; (b) Similarity Top-10 result image"

Tab.6

Contrast experiment Ⅰ results"

实验方法 查全率/% 平均准确率/%
方法1 67.54 53.83
方法2 85.62 61.43
方法3 78.65 66.57
方法4 84.22 80.33
本文方法 97.37 87.54
[1] 方珍红, 谢明元, 杨玲. 一种新的基于加权颜色特征的图像检索算法[J]. 激光与红外, 2013,43(4):471-474.
FANG Zhenhong, XIE Mingyuan, YANG Ling. New retrieval algorithm based on weighted color feature[J]. Laser & Infrared, 2013,43(4):471-474.
[2] 崔红静, 景军锋, 张缓缓, 等. 融合颜色和边缘特征的织物图像检索算法[J]. 棉纺织技术, 2019(10):35-39.
CUI Hongjing, JING Junfeng, ZHANG Huanhuan, et al. Fabric image retrieval method of blending the color and edge feature[J]. Cotton Textile Technology, 2019(10):35-39.
[3] 向忠, 何旋, 钱淼, 等. 基于边缘和颜色特征的织物印花花型检索[J]. 纺织学报, 2018,39(5):137-143.
XIANG Zhong, HE Xuan, QIAN Miao, et al. Printed fabric pattern retrieval based on edge and color features[J]. Journal of Textile Research, 2018,39(5):137-143.
[4] 牛盼盼, 王向阳, 周璐, 等. 基于多语义特征的彩色图像检索技术研究[J]. 计算机科学, 2009,36(3):226-231.
NIU Panpan, WANG Xiangyang, ZHOU Lu, et al. Content-based color image retrieval using multi-semantics[J]. Computer Science, 2009,36(3):226-231.
[5] 王志伟, 普园媛, 王鑫, 等. 基于多特征融合的多尺度服装图像精准化检索[J]. 计算机学报, 2020,43(4):740-754.
WANG Zhiwei, PU Yuanyuan, WANG Xin, et al. Accurate retrieval of multi-scale clothing images based on multi-feature fusion[J]. Chinese Journal of Computers, 2020,43(4):740-754.
[6] 孙洁, 丁笑君, 杜磊, 等. 基于卷积神经网络的织物图像特征提取与检索研究进展[J]. 纺织学报, 2019,40(12):146-151.
SUN Jie, DING Xiaojun, DU Lei, et al. Research progress of fabric image feature extraction and retrieval based on convolutional neural network[J]. Journal of Textile Research, 2019,40(12):146-151.
[7] 徐慧, 白美丽, 万韬阮, 等. 基于深度学习的服装图像语义分析与检索推荐[J]. 纺织高校基础科学学报, 2020,33(3):64-72.
XU Hui, BAI Meili, WAN Taoruan, et al. Image semantic analysis and retrieval recommendation for clothing based on deep learning[J]. Basic Sciences Journal of Textile Universities, 2020,33(3):64-72.
[8] 刘沐黎, 袁理, 杨亚莉, 等. 基于混合色彩空间独立特征的色纺面料颜色表征模型[J]. 纺织学报, 2019,40(9):62-69.
LIU Muli, YUAN Li, YANG Yali, et al. Color representation model for pre-colored fiber blends based on independent component features from mixed color space[J]. Journal of Textile Research, 2019,40(9):62-69.
[9] 袁理, 代乔民, 付顺林, 等. 基于原色纤维混配色织物的呈色特性与影响因素分析[J]. 纺织学报, 2018,39(10):38-43.
YUAN Li, DAI Qiaomin, FU Shunlin, et al. Analysis of color rendering characteristics and influencing factors of primary color fiber mixed color fabrics[J]. Journal of Textile Research, 2018,39(10):38-43.
doi: 10.1177/004051756903900107
[10] OJALA T, PIETIK A M, MAENPAA T. Multiresolution grayscale and rotation invariant texture classiflcation with localbinary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(7):971-987.
doi: 10.1109/TPAMI.2002.1017623
[11] 赵树志, 狄岚, 何锐波. 基于改进判别性完整局部二值模式与格分割的织物瑕疵检测方法[J]. 纺织学报, 2018,39(9):57-64.
ZHAO Shuzhi, DI Lan, HE Ruibo. Fabric defect inspection based on modified discriminant complete local binary pattern and lattice segmentation[J]. Journal of Textile Research, 2018,39(9):57-64.
[12] 夏海浜, 黄鸿云, 丁佐华. 基于迁移学习与支持向量机的服装舒适度评估[J]. 纺织学报, 2020,41(6):125-131.
XIA Haibang, HUANG Hongyun, DING Zuohua. Clothing comfort evaluation based on transfer learning and support vector machine[J]. Journal of Textile Research, 2020,41(6):125-131.
[1] GONG Xue, YUAN Li, LIU Junping, YANG Yali, LIU Muli, KE Zhengtao, YAN Yuchen. Recognition of colored spun fabric interlacing point based on mixed color space and multiple kernel learning [J]. Journal of Textile Research, 2020, 41(05): 58-65.
[2] SUN Jie, DING Xiaojun, DU Lei, LI Qinman, ZOU Fengyuan. Research progress of fabric image feature extraction and retrieval based on convolutional neural network [J]. Journal of Textile Research, 2019, 40(12): 146-151.
[3] LIU Muli, YUAN Li, YANG Yali, LIU Junping, CHENG Zhe, GONG Xue, JI Changjun, YAN Yuchen. Color representation model for pre-colored fiber blends based on independent component features from mixed color space [J]. Journal of Textile Research, 2019, 40(09): 62-69.
[4] WU Chuanbin, LIU Li, FU Xiaodong, LIU Lijun, HUANG Qingsong. Clothing image retrieval by salient region detection and sketches [J]. Journal of Textile Research, 2019, 40(07): 174-181.
[5] YUAN Li, WANG Danshu, GU Qian, TU Shaojie, XIONG Ying, YUAN Haoran, LIU Junping, YAN Yuchen. Coloration rules between colored spun yarns and its fabrics based on spectral pan-similarity measure [J]. Journal of Textile Research, 2019, 40(02): 30-37.
[6] .  Coloration characteristics and influence factors of colored spun fabric based on primary-color fibers blending [J]. Journal of Textile Research, 2018, 39(10): 38-43.
[7] . Necktie pattern retrieval method based on image edge characteristics [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 123-126.
[8] . Research on image retrieval algorithm by relevance feedback technology and shape features [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 94-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!