Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 200-208.doi: 10.13475/j.fzxb.20210401609
• Comprehensive Review • Previous Articles Next Articles
CHENG Ningbo1,2,3, MIAO Dongyang2, WANG Xianfeng2, WANG Zhaohui1,3(), DING Bin2, YU Jianyong2
CLC Number:
[1] | 姜怀. 常用/特殊服装功能构成、评价与展望(上)[M]. 上海: 东华大学出版社, 2006:2-13. |
JIANG Huai. Functional composition, evaluation and prospect of common/special clothing:Ⅰ[M]. Shanghai: Donghua University Press, 2006:2-13. | |
[2] |
GUGLIUZZA Annarosa, DRIOLI Enrico. A review on membrane engineering for innovation in wearable fabrics and protective textiles[J]. Journal of Membrane Science, 2013, 446:350-375.
doi: 10.1016/j.memsci.2013.07.014 |
[3] |
WERNER Jürgen. Control aspects of human temperature regulation[J]. Automatica, 1981, 17(2):351-362.
doi: 10.1016/0005-1098(81)90052-2 |
[4] |
PÉREZ-LOMBARD L, ORTIZ J, CORONEL J F, et al. A review of HVAC systems requirements in building energy regulations[J]. Energy and Buildings, 2011, 43(2/3): 255-268.
doi: 10.1016/j.enbuild.2010.10.025 |
[5] | CENTER B P. Annual energy outlook 2020[J]. Energy Information Administration, 2020, 12: 1672-1679. |
[6] | Chiara Del Mastro. Cooling[R]. Paris: IEA, 2021. |
[7] | International Energy Association. Global energy demand rose by 2.3% in 2018, its fastest pace in the last decade[N/OL]. IEA, (2019-5-26) [2019-5-28]. https://www.iea.org/news/global-energydemand-rose-by-23-in-2018-its-fastest-pace-in-the-last-decade. |
[8] |
LUNDGREN Karin, KJELLSTROM Tord. Sustainability challenges from climate change and air conditioning use in urban areas[J]. Sustainability, 2013, 5(7):3116-3128.
doi: 10.3390/su5073116 |
[9] |
MCLINDEN Mark O, SEETON Christopher J, PEARSON Andy. New refrigerants and system configurations for vapor-compression refrigeration[J]. Science, 2020, 370(6518):791-796.
doi: 10.1126/science.abe3692 pmid: 33184206 |
[10] | 罗茂辉. 建筑环境人体热适应规律与调节机理研究[D]. 北京: 清华大学, 2017:26-48. |
LUO Maohui. Research on the dynamics and mechanism of human thermal adaptation in building environ-ment[D]. Beijing: Tsinghua University, 2017:26-48. | |
[11] |
NOËL Djongyang, RENÉ Tchinda, DONATIEN Njomo. Thermal comfort: a review paper[J]. Renewable and Sustainable Energy Reviews, 2010, 14(9):2626-2640.
doi: 10.1016/j.rser.2010.07.040 |
[12] |
PENG L H, SU B, YU A B, et al. Review of clothing for thermal management with advanced materials[J]. Cellulose, 2019, 26(1):1-34.
doi: 10.1007/s10570-019-02249-8 |
[13] |
HU R, LIU Y D, SHIN S M, et al. Emerging materials and strategies for personal thermal management[J]. Advanced Energy Materials, 2020.DOI: org/10.1002/aenm.201903921.
doi: org/10.1002/aenm.201903921 |
[14] |
FANGER P O. Assessment of man's thermal comfort in practice[J]. British Journal of Industrial Medicine, 1973, 30(4):313-324.
pmid: 4584998 |
[15] |
YAO R M, LI B Z, LIU J. A theoretical adaptive model of thermal comfort-adaptive predicted mean vote (aPMV)[J]. Building and Environment, 2009, 44(10):2089-2096.
doi: 10.1016/j.buildenv.2009.02.014 |
[16] | 张渭源. 服装舒适性与功能[M]. 2版. 北京: 中国纺织出版社, 2011:2-4. |
ZHANG Weiyuan. Clothing comfort and function[M]. 2nd ed. Beijing: China Textile & Apparel Press, 2011:2-4. | |
[17] |
WONG A S W, LI Y, YEUNG P K W. Predicting clothing sensory comfort with artificial intelligence hybrid models[J]. Textile Research Journal, 2004, 74(1):13-19.
doi: 10.1177/004051750407400103 |
[18] |
GRODZINSKY E, LEVANDER M S. Understanding fever and body temperature: a cross-disciplinary approach to clinical practice[J]. Anesthesia & Analgesia, 2020.DOI: 10.1213/ANE.0000000000004777.
doi: 10.1213/ANE.0000000000004777 |
[19] | ZHANG C, WANG F. Comfort management of fibrous materials[J]. Hoboken: Wiley Online Library, 2020: 857-887. |
[20] | 孙庆伟. 人体生理学[M]. 北京: 中国医药科技出版社, 2009:140-149. |
SUN Qingwei. The physiology of the human body[M]. Beijing: China Medical Science and Technology Press, 2009:140-149. | |
SUN Qingwei. Human physiology[M]. Beijing: China Medical Science and Technology Press, 2009:140-149. | |
[21] |
PEDERSEN Lorents. The heat regulation of the human body[J]. Acta Physiologica Scandinavica, 1969, 77(1/2):95-105.
doi: 10.1111/j.1748-1716.1969.tb04556.x |
[22] |
HARDY J D, DUBOIS E F. Regulation of heat loss from the human body[J]. Proceedings of the National Academy of Sciences of the United States of America, 1937, 23(12):624.
pmid: 16577831 |
[23] |
SHIBASAKI M, WILSON T E, et al. Neural control and mechanisms of eccrine sweating during heat stress and exercise[J]. Journal of Applied Physiology, 2006, 100(5): 1692-1701.
pmid: 16614366 |
[24] | WAN X H, ZENG R. Handbook of clinical diagno-stics[M]. China: People's Medical Publishing House, 2019:3-12. |
[25] |
ELIZABETH P. Living with heat[J]. Science, 2020, 370(6518):778-781.
doi: 10.1126/science.370.6518.778 pmid: 33184201 |
[26] |
HOYT T, ARENS E, ZHANG H. Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings[J]. Building and Environment, 2015, 88:89-96.
doi: 10.1016/j.buildenv.2014.09.010 |
[27] |
GHAHRAMANI A, ZHANG K, DUTTA K, et al. Energy savings from temperature setpoints and deadband: quantifying the influence of building and system properties on savings[J]. Applied Energy, 2016, 165:930-942.
doi: 10.1016/j.apenergy.2015.12.115 |
[28] |
TABOR J, CHATTERJEE K, GHOSH T K. Smart textile-based personal thermal comfort systems: current status and potential solutions[J]. Advanced Materials Technologies, 2020.DOI: org/10.1002/admt.201901155.
doi: org/10.1002/admt.201901155 |
[29] |
PENG Y C, CUI Y. Advanced textiles for personal thermal management and energy[J]. Joule, 2020, 4(4):724-742.
doi: 10.1016/j.joule.2020.02.011 |
[30] |
TONG J K, HUANG X P, BORISKINA S V, et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. ACS Photonics, 2015, 2(6):769-778.
doi: 10.1021/acsphotonics.5b00140 |
[31] |
HSU P C, SONG A Y, CATRYSSE P B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023.
doi: 10.1126/science.aaf5471 |
[32] |
PENG Y C, CHEN J, SONG AY, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2):105-112.
doi: 10.1038/s41893-018-0023-2 |
[33] |
CAI L L, SONG AY, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018.DOI: org/10.1002/adma.201802152.
doi: org/10.1002/adma.201802152 |
[34] | XIAO R, HOU C, YANG W, et al. Infrared-radiation-enhanced nanofiber membrane for sky radiative cooling of the human body[J]. ACS Applied Materials & Interfaces, 2019, 11(47):44673-44681. |
[35] |
LIU R, WANG X W, YU J R, et al. A novel approach to design nanoporous polyethylene/polyester composite fabric via TIPS for human body cooling[J]. Macromolecular Materials and Engineering, 2018.DOI: org/10.1002/mame.201700456.
doi: org/10.1002/mame.201700456 |
[36] | SONG Y N, MA R J, XU L, et al. Wearable polyethylene/polyamide composite fabric for passive human body cooling[J]. ACS Applied Materials & Interfaces, 2018, 10(48):41637-41644. |
[37] |
WANG X, LIU X H, LI ZH Y, et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling[J]. Advanced Functional Materials, 2020.DOI: org/10.1002/adfm.201907562.
doi: org/10.1002/adfm.201907562 |
[38] |
WEI W, ZHU Y, LI Q, et al. An Al2O3-cellulose acetate-coated textile for human body cooling[J]. Solar Energy Materials and Solar Cells, 2020.DOI: org/10.1016/j.solmat.2020.110525.
doi: org/10.1016/j.solmat.2020.110525 |
[39] |
ZHANG H W, KCS L Y, LIU X H, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling[J]. Proceedings of the National Academy of Sciences, 2020, 117(26): 14657-14666.
doi: 10.1073/pnas.2001802117 |
[40] |
HSU P C, LIU X G, LIU C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters, 2014, 15(1):365-371.
doi: 10.1021/nl5036572 |
[41] |
YANG A K, CAI L L, ZHANG R F, et al. Thermal management in nanofiber-based face mask[J]. Nano Letters, 2017, 17(6):3506-3510.
doi: 10.1021/acs.nanolett.7b00579 pmid: 28505460 |
[42] |
HSU P C, LIU C, SONG A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances, 2017.DOI: 10.1126/sciadv.170089.
doi: 10.1126/sciadv.170089 |
[43] | WU J W, HU R, ZENG S N, et al. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 19015-19022. |
[44] | YU X, LI Y, YIN X, et al. Corncoblike, superhydrophobic, and phase-changeable nanofibers for intelligent thermoregulating and water-repellent fabrics[J]. ACS Applied Materials & Interfaces, 2019, 11(42):39324-39333. |
[45] |
BABAPOOR A, KARIMI G, GOLESTANEH S I, et al. Coaxial electro-spun PEG/PA6 composite fibers: fabrication and characterization[J]. Applied Thermal Engineering, 2017, 118:398-407.
doi: 10.1016/j.applthermaleng.2017.02.119 |
[46] |
TING D, WEI J, YE L, et al. A phase change material embedded composite consisting of kapok and hollow PET fibers for dynamic thermal comfort regulation[J]. Industrial Crops & Products, 2020.DOI: org/10.1016/j.indcrop.2020.112945.
doi: org/10.1016/j.indcrop.2020.112945 |
[47] |
SU Y, ZHU W, TIAN M, et al. Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing[J]. Applied Thermal Engineering, 2020.DOI: org/10.1016/j.applthermaleng.2020.115340.
doi: org/10.1016/j.applthermaleng.2020.115340 |
[48] |
HU J L, MENG H, LI G Q, et al. A review of stimuli-responsive polymers for smart textile applications[J]. Smart Materials and Structures, 2012. DOI: 10.1088/0964-1726/21/5/053001.
doi: 10.1088/0964-1726/21/5/053001 |
[49] |
ZHANG X, YU S, XU B, et al. Dynamic gating of infrared radiation in a textile[J]. Science, 2019, 363(6427):619-623.
doi: 10.1126/science.aau1217 pmid: 30733415 |
[50] |
YAO L N, WANG W, CHENG C Y, et al. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables[J]. Science Advances, 2017.DOI: 10.1126/sciadv.1601984.
doi: 10.1126/sciadv.1601984 |
[51] |
WANG Y, LIANG X, ZHU H, et al. Reversible water transportation diode: temperature-adaptive smart janus textile for moisture/thermal management[J]. Advanced Functional Materials, 2020.DOI: org/10.1002/adfm.201907851.
doi: org/10.1002/adfm.201907851 |
[52] |
HU J L, IRFAN IQBAL M, SUN F. Wool can be cool: water-actuating woolen knitwear for both hot and cold[J]. Advanced Functional Materials, 2020.DOI: org/10.1002/adfm.202005033.
doi: org/10.1002/adfm.202005033 |
[53] |
ZHONG Y, ZHANG F H, WANG M, et al. Reversible humidity sensitive clothing for personal thermoregula-tion[J]. Scientific Reports, 2017, 7(1):1-8.
doi: 10.1038/s41598-016-0028-x |
[54] | 施瑶. 高导热聚合物复合纺织品的制备与性能研究[D]. 上海: 上海师范大学, 2020:2-16. |
SI Yao. Preparation and properties of high thermal conductivity polymer composites[D]. Shanghai: Shanghai Normal University, 2020:2-16. | |
[55] |
LIN Y, JIA Y, ALVA G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82:2730-2742.
doi: 10.1016/j.rser.2017.10.002 |
[56] |
ABBAS A, ZHAO Y, WANG X G, et al. Cooling effect of mwcnt-containing composite coatings on cotton fabrics[J]. Journal of The Textile Institute, 2013, 104(8):798-807.
doi: 10.1080/00405000.2012.757007 |
[57] | YU X, LI Y, WANG X F, et al. Thermoconductive, moisture-permeable, and superhydrophobic nanofibrous membranes with interpenetrated boron nitride network for personal cooling fabrics[J]. ACS Applied Materials & Interfaces, 2020, 12(28):32078-32089. |
[58] | HUANG C L, QIAN X, YANG R G. Thermal conductivity of polymers and polymer nanocompo-sites[J]. Materials Science and Engineering, 2018, 132:1-22. |
[59] |
MIAO D Y, WANG X F, YU J Y, et al. A biomimetic transpiration textile for highly efficient personal drying and cooling[J]. Advanced Functional Materials, 2021.DOI: org/10.1002/adfm.202008705.
doi: org/10.1002/adfm.202008705 |
[60] |
GAO T T, YANG Z, CHEN C J, et al. Three-dimensional printed thermal regulation textiles[J]. ACS Nano, 2017, 11(11):11513-11520.
doi: 10.1021/acsnano.7b06295 pmid: 29072903 |
[61] |
ZHAO M M, GAO C S, WANG F M, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. International Journal of Industrial Ergonomics, 2013, 43(3):232-237.
doi: 10.1016/j.ergon.2013.01.001 |
[62] | 曾彦彰, 邓中山, 刘静. 基于微型风扇阵列系统的人体降温空调服[J]. 纺织学报, 2007, 28(6): 100-105. |
ZENG Yanzhang, DENG Zhongshan, LIU Jing, et al. Micro-fan-array system enabled air conditioning suit for cooling human body[J]. Journal of Textile Research, 2007, 28(6):100-105. | |
[63] | GUO T H, SHANG B F, DUAN B, et al. Design and testing of a liquid cooled garment for hot environ-ments[J]. Journal of Thermal Biology, 2015, 49:47-54. |
[64] |
ZHAO D L, LU X, FAN T Z, et al. Personal thermal management using portable thermoelectrics for potential building energy saving[J]. Applied Energy, 2018, 218:282-291.
doi: 10.1016/j.apenergy.2018.02.158 |
[65] |
HONG S, GU Y, SEO J K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science Advances, 2019.DOI: org/10.1002/smll.201801527.
doi: org/10.1002/smll.201801527 |
[66] | 许静娴, 刘莉, 李俊. 镀银纱线电热针织物的开发及性能评价[J]. 纺织学报, 2016. 37(12):24-28. |
XU Jingxian, LIU Li, LI Jun. Development and performance evaluation of electrically-heated textile based on silver-coated yarn[J]. Journal of Textile Research, 2016, 37(12):24-28. | |
[67] |
ZHANG T, LI K W, ZHANG J, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers[J]. Nano Energy, 2017, 41:35-42.
doi: 10.1016/j.nanoen.2017.09.019 |
[68] | 彭蕙, 毛宁, 覃小红. 不同亲疏水性微纳米纤维/棉纤维包芯纱织物的导湿性能[J]. 东华大学学报(自然科学版), 2020, 46(5):694-702. |
PENG Hui, MAO Ning, QIN Xiaohong. Moisture conductivity of different hydrophilic submicron fiber/cotton fiber core-spun yarn fabrics[J]. Journal of Donghua University(Natural Science), 2020, 46(5):694-702. | |
[69] | 雷敏, 李毓陵, 马颜雪, 等. 织物散湿性能的研究进展[J]. 纺织学报, 2020, 41(7):174-181. |
LEI Min, LI Yuling, MA Yanxue, et al. Research progress of moisture evaporating performance of fabrics[J]. Journal of Textile Research, 2020, 41(7):174-181.
doi: 10.1177/004051757104100215 |
|
[70] |
DAI B, LI K, SHI L X, et al. Bioinspired janus textile with conical micropores for human body moisture and thermal management[J]. Advanced Materials, 2019.DOI: 10.1126/sciadv.aaw0536.
doi: 10.1126/sciadv.aaw0536 |
[71] | WANG X F, HUANG Z, MIAO D Y, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2018, 13(2):1060-1070. |
[72] |
MIAO D Y, HUANG Z, WANG X F, et al. Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles[J]. Small, 2018.DOI: org/10.1016/j.nanoen.2017.09.019.
doi: org/10.1016/j.nanoen.2017.09.019 |
[1] | HAN Qiyang, WU Xiongying, DING Xuemei. Research progress on fibrous microplastic released from synthetic textiles during domestic laundry [J]. Journal of Textile Research, 2021, 42(06): 35-40. |
|