Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 200-208.doi: 10.13475/j.fzxb.20210401609

• Comprehensive Review • Previous Articles     Next Articles

Review in functional textiles for personal thermal and moisture comfort management

CHENG Ningbo1,2,3, MIAO Dongyang2, WANG Xianfeng2, WANG Zhaohui1,3(), DING Bin2, YU Jianyong2   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
    3. Key Laboratory of Clothing Design & Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2021-04-07 Revised:2022-07-10 Online:2022-10-15 Published:2022-10-28
  • Contact: WANG Zhaohui E-mail:wzh_sh2007@dhu.edu.cn

Abstract:

With the aim of achieving improved individual comfort and reduce energy consumption in providing cooling and heating, textiles regulating heat and moisture exchange between human body and its surroundings are a promising solution. This paper reviews the researches on functional textiles for heat and moisture management. The review started with the introduction of personal heat and moisture comfort management mechanisms, followed by summarizing six common advanced functional textiles that can be used for personal heat and moisture management, these being the radiative thermoregulation textiles, phase change thermoregulation textiles, smart response textiles, thermal conductive textiles, thermoregulation textiles for energy conversion, and moisture management textiles. The research progress in functional textiles was summarized on the basis of different heat and moisture management mechanisms and their potential applications in several fields, taking that fabric regulation of microclimate between body and ambient heat and moisture balance is the key to individual comfort. The review pointed out that the current advanced functional textiles for heat and moisture management still have problems such as difficulties in scale preparation, functional singleness, lack of intelligence and absence of systemic heat and moisture comfort evaluation, and it is foreseen that advanced textiles for personal heat management, energy harvesting technology and integration of flexible electronic devices are the future development trend of smart clothing.

Key words: personal thermal comfort, radiative thermoregulation textile, phase change thermoregulation textile, smart response textile, thermal conductive textile, thermoregulation textiles for energy conversion, moisture management textile

CLC Number: 

  • TS941.15

Fig.1

Human thermoregulation and heat transfer mechanism"

Fig.2

Mechanisms of thermal radiation regulation of clothing"

Tab.1

Radiative cooling materials"

降温材料 制备方法 太阳光反射
率/%
MIR透过
率/%
MIR
发射率
降温温度/℃ 文献
纳米多孔PE 纺丝-复合 96 2~2.7 [31-32]
纳米多孔PE+ ZnO 纺丝-涂层 > 90 > 80 5~13 [33]
PA+SiO2 纺丝 > 85 0.4~1.7 [34]
UHMWPE/聚酯 纺丝-复合 82.8 0.5~0.7 [35]
PA6+PE 纺丝-复合 73.61 90.80 0.2 [36]
PVDF+TEOS+ SiO2 纺丝-浸渍 97 > 0.96 6 [37]
Al2O3/醋酸纤维素 涂层-复合 80.1 > 0.9 2.3~8 [38]
PDMS+Al2O3 微冲压法 约95 > 0.96 5.1 [39]

Tab.2

Stimuli-responsive smart fabrics for thermal and moisture management"

织物 响应机制 文献
红外辐射“门控效应”的智能织物 湿度诱导纱线间距变化,改变织物辐射率,从而增强热交换 [49]
新型乳胶织物 温度诱导微生物细胞尺寸变化,织物弯曲改变,打开/关闭通风口,实现温湿度智能调控 [50]
智能Janus织物 温度诱导织物亲疏水变化,从而孔隙大小改变,实现温湿度调控 [51]
水驱动形状记忆羊毛织物 湿度诱导纱线长度和直径变化,使得织物线圈变化,提高热湿舒适性 [52]
湿敏智能调温织物 湿度诱导织物发生可逆弯曲,实现智能温湿度调控 [53]
[1] 姜怀. 常用/特殊服装功能构成、评价与展望(上)[M]. 上海: 东华大学出版社, 2006:2-13.
JIANG Huai. Functional composition, evaluation and prospect of common/special clothing:Ⅰ[M]. Shanghai: Donghua University Press, 2006:2-13.
[2] GUGLIUZZA Annarosa, DRIOLI Enrico. A review on membrane engineering for innovation in wearable fabrics and protective textiles[J]. Journal of Membrane Science, 2013, 446:350-375.
doi: 10.1016/j.memsci.2013.07.014
[3] WERNER Jürgen. Control aspects of human temperature regulation[J]. Automatica, 1981, 17(2):351-362.
doi: 10.1016/0005-1098(81)90052-2
[4] PÉREZ-LOMBARD L, ORTIZ J, CORONEL J F, et al. A review of HVAC systems requirements in building energy regulations[J]. Energy and Buildings, 2011, 43(2/3): 255-268.
doi: 10.1016/j.enbuild.2010.10.025
[5] CENTER B P. Annual energy outlook 2020[J]. Energy Information Administration, 2020, 12: 1672-1679.
[6] Chiara Del Mastro. Cooling[R]. Paris: IEA, 2021.
[7] International Energy Association. Global energy demand rose by 2.3% in 2018, its fastest pace in the last decade[N/OL]. IEA, (2019-5-26) [2019-5-28]. https://www.iea.org/news/global-energydemand-rose-by-23-in-2018-its-fastest-pace-in-the-last-decade.
[8] LUNDGREN Karin, KJELLSTROM Tord. Sustainability challenges from climate change and air conditioning use in urban areas[J]. Sustainability, 2013, 5(7):3116-3128.
doi: 10.3390/su5073116
[9] MCLINDEN Mark O, SEETON Christopher J, PEARSON Andy. New refrigerants and system configurations for vapor-compression refrigeration[J]. Science, 2020, 370(6518):791-796.
doi: 10.1126/science.abe3692 pmid: 33184206
[10] 罗茂辉. 建筑环境人体热适应规律与调节机理研究[D]. 北京: 清华大学, 2017:26-48.
LUO Maohui. Research on the dynamics and mechanism of human thermal adaptation in building environ-ment[D]. Beijing: Tsinghua University, 2017:26-48.
[11] NOËL Djongyang, RENÉ Tchinda, DONATIEN Njomo. Thermal comfort: a review paper[J]. Renewable and Sustainable Energy Reviews, 2010, 14(9):2626-2640.
doi: 10.1016/j.rser.2010.07.040
[12] PENG L H, SU B, YU A B, et al. Review of clothing for thermal management with advanced materials[J]. Cellulose, 2019, 26(1):1-34.
doi: 10.1007/s10570-019-02249-8
[13] HU R, LIU Y D, SHIN S M, et al. Emerging materials and strategies for personal thermal management[J]. Advanced Energy Materials, 2020.DOI: org/10.1002/aenm.201903921.
doi: org/10.1002/aenm.201903921
[14] FANGER P O. Assessment of man's thermal comfort in practice[J]. British Journal of Industrial Medicine, 1973, 30(4):313-324.
pmid: 4584998
[15] YAO R M, LI B Z, LIU J. A theoretical adaptive model of thermal comfort-adaptive predicted mean vote (aPMV)[J]. Building and Environment, 2009, 44(10):2089-2096.
doi: 10.1016/j.buildenv.2009.02.014
[16] 张渭源. 服装舒适性与功能[M]. 2版. 北京: 中国纺织出版社, 2011:2-4.
ZHANG Weiyuan. Clothing comfort and function[M]. 2nd ed. Beijing: China Textile & Apparel Press, 2011:2-4.
[17] WONG A S W, LI Y, YEUNG P K W. Predicting clothing sensory comfort with artificial intelligence hybrid models[J]. Textile Research Journal, 2004, 74(1):13-19.
doi: 10.1177/004051750407400103
[18] GRODZINSKY E, LEVANDER M S. Understanding fever and body temperature: a cross-disciplinary approach to clinical practice[J]. Anesthesia & Analgesia, 2020.DOI: 10.1213/ANE.0000000000004777.
doi: 10.1213/ANE.0000000000004777
[19] ZHANG C, WANG F. Comfort management of fibrous materials[J]. Hoboken: Wiley Online Library, 2020: 857-887.
[20] 孙庆伟. 人体生理学[M]. 北京: 中国医药科技出版社, 2009:140-149.
SUN Qingwei. The physiology of the human body[M]. Beijing: China Medical Science and Technology Press, 2009:140-149.
SUN Qingwei. Human physiology[M]. Beijing: China Medical Science and Technology Press, 2009:140-149.
[21] PEDERSEN Lorents. The heat regulation of the human body[J]. Acta Physiologica Scandinavica, 1969, 77(1/2):95-105.
doi: 10.1111/j.1748-1716.1969.tb04556.x
[22] HARDY J D, DUBOIS E F. Regulation of heat loss from the human body[J]. Proceedings of the National Academy of Sciences of the United States of America, 1937, 23(12):624.
pmid: 16577831
[23] SHIBASAKI M, WILSON T E, et al. Neural control and mechanisms of eccrine sweating during heat stress and exercise[J]. Journal of Applied Physiology, 2006, 100(5): 1692-1701.
pmid: 16614366
[24] WAN X H, ZENG R. Handbook of clinical diagno-stics[M]. China: People's Medical Publishing House, 2019:3-12.
[25] ELIZABETH P. Living with heat[J]. Science, 2020, 370(6518):778-781.
doi: 10.1126/science.370.6518.778 pmid: 33184201
[26] HOYT T, ARENS E, ZHANG H. Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings[J]. Building and Environment, 2015, 88:89-96.
doi: 10.1016/j.buildenv.2014.09.010
[27] GHAHRAMANI A, ZHANG K, DUTTA K, et al. Energy savings from temperature setpoints and deadband: quantifying the influence of building and system properties on savings[J]. Applied Energy, 2016, 165:930-942.
doi: 10.1016/j.apenergy.2015.12.115
[28] TABOR J, CHATTERJEE K, GHOSH T K. Smart textile-based personal thermal comfort systems: current status and potential solutions[J]. Advanced Materials Technologies, 2020.DOI: org/10.1002/admt.201901155.
doi: org/10.1002/admt.201901155
[29] PENG Y C, CUI Y. Advanced textiles for personal thermal management and energy[J]. Joule, 2020, 4(4):724-742.
doi: 10.1016/j.joule.2020.02.011
[30] TONG J K, HUANG X P, BORISKINA S V, et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. ACS Photonics, 2015, 2(6):769-778.
doi: 10.1021/acsphotonics.5b00140
[31] HSU P C, SONG A Y, CATRYSSE P B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023.
doi: 10.1126/science.aaf5471
[32] PENG Y C, CHEN J, SONG AY, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2):105-112.
doi: 10.1038/s41893-018-0023-2
[33] CAI L L, SONG AY, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018.DOI: org/10.1002/adma.201802152.
doi: org/10.1002/adma.201802152
[34] XIAO R, HOU C, YANG W, et al. Infrared-radiation-enhanced nanofiber membrane for sky radiative cooling of the human body[J]. ACS Applied Materials & Interfaces, 2019, 11(47):44673-44681.
[35] LIU R, WANG X W, YU J R, et al. A novel approach to design nanoporous polyethylene/polyester composite fabric via TIPS for human body cooling[J]. Macromolecular Materials and Engineering, 2018.DOI: org/10.1002/mame.201700456.
doi: org/10.1002/mame.201700456
[36] SONG Y N, MA R J, XU L, et al. Wearable polyethylene/polyamide composite fabric for passive human body cooling[J]. ACS Applied Materials & Interfaces, 2018, 10(48):41637-41644.
[37] WANG X, LIU X H, LI ZH Y, et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling[J]. Advanced Functional Materials, 2020.DOI: org/10.1002/adfm.201907562.
doi: org/10.1002/adfm.201907562
[38] WEI W, ZHU Y, LI Q, et al. An Al2O3-cellulose acetate-coated textile for human body cooling[J]. Solar Energy Materials and Solar Cells, 2020.DOI: org/10.1016/j.solmat.2020.110525.
doi: org/10.1016/j.solmat.2020.110525
[39] ZHANG H W, KCS L Y, LIU X H, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling[J]. Proceedings of the National Academy of Sciences, 2020, 117(26): 14657-14666.
doi: 10.1073/pnas.2001802117
[40] HSU P C, LIU X G, LIU C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters, 2014, 15(1):365-371.
doi: 10.1021/nl5036572
[41] YANG A K, CAI L L, ZHANG R F, et al. Thermal management in nanofiber-based face mask[J]. Nano Letters, 2017, 17(6):3506-3510.
doi: 10.1021/acs.nanolett.7b00579 pmid: 28505460
[42] HSU P C, LIU C, SONG A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances, 2017.DOI: 10.1126/sciadv.170089.
doi: 10.1126/sciadv.170089
[43] WU J W, HU R, ZENG S N, et al. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 19015-19022.
[44] YU X, LI Y, YIN X, et al. Corncoblike, superhydrophobic, and phase-changeable nanofibers for intelligent thermoregulating and water-repellent fabrics[J]. ACS Applied Materials & Interfaces, 2019, 11(42):39324-39333.
[45] BABAPOOR A, KARIMI G, GOLESTANEH S I, et al. Coaxial electro-spun PEG/PA6 composite fibers: fabrication and characterization[J]. Applied Thermal Engineering, 2017, 118:398-407.
doi: 10.1016/j.applthermaleng.2017.02.119
[46] TING D, WEI J, YE L, et al. A phase change material embedded composite consisting of kapok and hollow PET fibers for dynamic thermal comfort regulation[J]. Industrial Crops & Products, 2020.DOI: org/10.1016/j.indcrop.2020.112945.
doi: org/10.1016/j.indcrop.2020.112945
[47] SU Y, ZHU W, TIAN M, et al. Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing[J]. Applied Thermal Engineering, 2020.DOI: org/10.1016/j.applthermaleng.2020.115340.
doi: org/10.1016/j.applthermaleng.2020.115340
[48] HU J L, MENG H, LI G Q, et al. A review of stimuli-responsive polymers for smart textile applications[J]. Smart Materials and Structures, 2012. DOI: 10.1088/0964-1726/21/5/053001.
doi: 10.1088/0964-1726/21/5/053001
[49] ZHANG X, YU S, XU B, et al. Dynamic gating of infrared radiation in a textile[J]. Science, 2019, 363(6427):619-623.
doi: 10.1126/science.aau1217 pmid: 30733415
[50] YAO L N, WANG W, CHENG C Y, et al. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables[J]. Science Advances, 2017.DOI: 10.1126/sciadv.1601984.
doi: 10.1126/sciadv.1601984
[51] WANG Y, LIANG X, ZHU H, et al. Reversible water transportation diode: temperature-adaptive smart janus textile for moisture/thermal management[J]. Advanced Functional Materials, 2020.DOI: org/10.1002/adfm.201907851.
doi: org/10.1002/adfm.201907851
[52] HU J L, IRFAN IQBAL M, SUN F. Wool can be cool: water-actuating woolen knitwear for both hot and cold[J]. Advanced Functional Materials, 2020.DOI: org/10.1002/adfm.202005033.
doi: org/10.1002/adfm.202005033
[53] ZHONG Y, ZHANG F H, WANG M, et al. Reversible humidity sensitive clothing for personal thermoregula-tion[J]. Scientific Reports, 2017, 7(1):1-8.
doi: 10.1038/s41598-016-0028-x
[54] 施瑶. 高导热聚合物复合纺织品的制备与性能研究[D]. 上海: 上海师范大学, 2020:2-16.
SI Yao. Preparation and properties of high thermal conductivity polymer composites[D]. Shanghai: Shanghai Normal University, 2020:2-16.
[55] LIN Y, JIA Y, ALVA G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82:2730-2742.
doi: 10.1016/j.rser.2017.10.002
[56] ABBAS A, ZHAO Y, WANG X G, et al. Cooling effect of mwcnt-containing composite coatings on cotton fabrics[J]. Journal of The Textile Institute, 2013, 104(8):798-807.
doi: 10.1080/00405000.2012.757007
[57] YU X, LI Y, WANG X F, et al. Thermoconductive, moisture-permeable, and superhydrophobic nanofibrous membranes with interpenetrated boron nitride network for personal cooling fabrics[J]. ACS Applied Materials & Interfaces, 2020, 12(28):32078-32089.
[58] HUANG C L, QIAN X, YANG R G. Thermal conductivity of polymers and polymer nanocompo-sites[J]. Materials Science and Engineering, 2018, 132:1-22.
[59] MIAO D Y, WANG X F, YU J Y, et al. A biomimetic transpiration textile for highly efficient personal drying and cooling[J]. Advanced Functional Materials, 2021.DOI: org/10.1002/adfm.202008705.
doi: org/10.1002/adfm.202008705
[60] GAO T T, YANG Z, CHEN C J, et al. Three-dimensional printed thermal regulation textiles[J]. ACS Nano, 2017, 11(11):11513-11520.
doi: 10.1021/acsnano.7b06295 pmid: 29072903
[61] ZHAO M M, GAO C S, WANG F M, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. International Journal of Industrial Ergonomics, 2013, 43(3):232-237.
doi: 10.1016/j.ergon.2013.01.001
[62] 曾彦彰, 邓中山, 刘静. 基于微型风扇阵列系统的人体降温空调服[J]. 纺织学报, 2007, 28(6): 100-105.
ZENG Yanzhang, DENG Zhongshan, LIU Jing, et al. Micro-fan-array system enabled air conditioning suit for cooling human body[J]. Journal of Textile Research, 2007, 28(6):100-105.
[63] GUO T H, SHANG B F, DUAN B, et al. Design and testing of a liquid cooled garment for hot environ-ments[J]. Journal of Thermal Biology, 2015, 49:47-54.
[64] ZHAO D L, LU X, FAN T Z, et al. Personal thermal management using portable thermoelectrics for potential building energy saving[J]. Applied Energy, 2018, 218:282-291.
doi: 10.1016/j.apenergy.2018.02.158
[65] HONG S, GU Y, SEO J K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science Advances, 2019.DOI: org/10.1002/smll.201801527.
doi: org/10.1002/smll.201801527
[66] 许静娴, 刘莉, 李俊. 镀银纱线电热针织物的开发及性能评价[J]. 纺织学报, 2016. 37(12):24-28.
XU Jingxian, LIU Li, LI Jun. Development and performance evaluation of electrically-heated textile based on silver-coated yarn[J]. Journal of Textile Research, 2016, 37(12):24-28.
[67] ZHANG T, LI K W, ZHANG J, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers[J]. Nano Energy, 2017, 41:35-42.
doi: 10.1016/j.nanoen.2017.09.019
[68] 彭蕙, 毛宁, 覃小红. 不同亲疏水性微纳米纤维/棉纤维包芯纱织物的导湿性能[J]. 东华大学学报(自然科学版), 2020, 46(5):694-702.
PENG Hui, MAO Ning, QIN Xiaohong. Moisture conductivity of different hydrophilic submicron fiber/cotton fiber core-spun yarn fabrics[J]. Journal of Donghua University(Natural Science), 2020, 46(5):694-702.
[69] 雷敏, 李毓陵, 马颜雪, 等. 织物散湿性能的研究进展[J]. 纺织学报, 2020, 41(7):174-181.
LEI Min, LI Yuling, MA Yanxue, et al. Research progress of moisture evaporating performance of fabrics[J]. Journal of Textile Research, 2020, 41(7):174-181.
doi: 10.1177/004051757104100215
[70] DAI B, LI K, SHI L X, et al. Bioinspired janus textile with conical micropores for human body moisture and thermal management[J]. Advanced Materials, 2019.DOI: 10.1126/sciadv.aaw0536.
doi: 10.1126/sciadv.aaw0536
[71] WANG X F, HUANG Z, MIAO D Y, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2018, 13(2):1060-1070.
[72] MIAO D Y, HUANG Z, WANG X F, et al. Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles[J]. Small, 2018.DOI: org/10.1016/j.nanoen.2017.09.019.
doi: org/10.1016/j.nanoen.2017.09.019
[1] HAN Qiyang, WU Xiongying, DING Xuemei. Research progress on fibrous microplastic released from synthetic textiles during domestic laundry [J]. Journal of Textile Research, 2021, 42(06): 35-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!