Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (06): 105-113.doi: 10.13475/j.fzxb.20210403501
• Textile Engineering • Previous Articles Next Articles
MA Ying1,2, XIANG Weihong1, ZHAO Yang1,2, DENG Congying1,2, LU Sheng1,2,3(), ZENG Xianjun4
CLC Number:
[1] |
YU B, BRADLEY R S, SOUTIS C, et al. 2D and 3D imaging of fatigue failure mechanisms of 3D woven composites[J]. Composites Part A, 2015, 77:37-49.
doi: 10.1016/j.compositesa.2015.06.013 |
[2] |
BANDARU A K, SACHAN Y, AHMAD S, et al. On the mechanical response of 2D plain woven and 3D angle-interlock fabrics[J]. Composites Part B, 2017, 118:135-148.
doi: 10.1016/j.compositesb.2017.03.011 |
[3] |
DAI S, CUNNINGHAM P R, MARSHALL S, et al. Influence of fibre architecture on the tensile,compressive and flexural behaviour of 3D woven composites[J]. Composites Part A, 2015, 69:195-207.
doi: 10.1016/j.compositesa.2014.11.012 |
[4] |
CORBIN A C, BOUSSU F, FERREIRA M, et al. Influence of 3D warp interlock fabrics parameters made with flax rovings on their final mechanical behaviour[J]. Journal of Industrial Textiles, 2020, 49(9):1123-1144.
doi: 10.1177/1528083718808790 |
[5] |
KIM S J, KIM H A. Effect of fabric structural parameters and weaving conditions to warp tension of aramid fabrics for protective garments[J]. Textile Research Journal, 2018, 88(9):987-1001.
doi: 10.1177/0040517517693981 |
[6] | 燕春云, 郭兴峰. 基于UG二次开发的三维正交机织物模型构建[J]. 玻璃钢/复合材料, 2014(5):20-24. |
YAN Chunyun, GUO Xingfeng. The construction of the three-dimensional orthogonal organization model of woven fabric based on UG secondary development[J]. Fiber Reinforced Plastics/Composites, 2014(5):20-24. | |
[7] | 朱建华, 张瑞云, 王伟, 等. 复杂组织多层机织物三维建模与仿真[J]. 玻璃钢/复合材料, 2016(2):47-52. |
ZHU Jianhua, ZHANG Ruiyun, WANG Wei, et al. 3D modeling and simulation of multi-layer woven fabric with complex fabric weave[J]. Fiber Reinforced Plastics/Composites, 2016(2):47-52. | |
[8] | 王旭, 杜增锋, 王翠娥, 等. 贯穿正交机织物结构的参数化三维建模[J]. 纺织学报, 2019(11):57-63. |
WANG Xu, DU Zengfeng, WANG Cuie, et al. Parametric three-dimensional modeling on through-thickness orthogonal woven fabric structure[J]. Journal of Textile Research, 2019(11):57-63. | |
[9] |
PATEL D K, WAAS A M, YEN C F. Direct numerical simulation of 3D woven textile composites subjected to tensile loading:an experimentally validated multiscale approach[J]. Composites Part B, 2018, 152:102-115.
doi: 10.1016/j.compositesb.2018.06.012 |
[10] |
YING Z P, HU X D, CHENG X Y, et al. Numerical investigation on the effect of tow tension on the geometry of three-dimensional orthogonally woven fabric[J]. Textile Research Journal, 2019, 89(18):3779-3791.
doi: 10.1177/0040517518821912 |
[11] |
DAELEMANS L, FAES J, ALLAOUI S, et al. Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method[J]. Composites Science and Technology, 2016, 137:177-187.
doi: 10.1016/j.compscitech.2016.11.003 |
[12] |
GREEN S D, LONG A C, SAID B S F E, et al. Numerical modelling of 3D woven preform deformations[J]. Composite Structures, 2014, 108:747-756.
doi: 10.1016/j.compstruct.2013.10.015 |
[13] |
WANG Y Q, SUN X K. Digital-element simulation of textile processes[J]. Composites Science and Technology, 2001, 61(2):311-319.
doi: 10.1016/S0266-3538(00)00223-2 |
[14] |
ZHOU G M, SUN X K, WANG Y Q. Multi-chain digital element analysis in textile mechanics[J]. Composites Science and Technology, 2004, 64(2):239-244.
doi: 10.1016/S0266-3538(03)00258-6 |
[15] |
MIAO Y Y, ZHOU E, WANG Y Q, et al. Mechanics of textile composites:micro-geometry[J]. Composites Science and Technology, 2008, 68(7):1671-1678.
doi: 10.1016/j.compscitech.2008.02.018 |
[16] |
HUANG L J, WANG Y Q, MIAO Y Y, et al. Dynamic relaxation approach with periodic boundary conditions in determining the 3-D woven textile micro-geometry[J]. Composite Structures, 2013, 106:417-425.
doi: 10.1016/j.compstruct.2013.05.057 |
[1] | PENG Laihu, TANG Qilin, DAI Ning, HU Xudong. Prediction of loom machine status based on binary K-means theory [J]. Journal of Textile Research, 2023, 44(05): 112-118. |
[2] | ZHOU Zhifang, ZHOU Jiu, PENG Xi, HUANG Jinbo. Weaving process design for three-dimensional changeable spacer jacquard fabrics [J]. Journal of Textile Research, 2023, 44(03): 67-72. |
[3] | MA Ying, LIU Yueyan, ZHAO Yang, CHEN Xiang, LU Sheng, HU Hanjie. Mechanical property analysis of yarn pull-out from aramid plain woven fabrics based on micro-geometry [J]. Journal of Textile Research, 2022, 43(04): 47-54. |
[4] | HUANG Jinbo, ZHU Chengyan, ZHANG Hongxia, HONG Xinghua, ZHOU Zhifang. Design of three-dimensional spacer fabrics based on rapier looms [J]. Journal of Textile Research, 2021, 42(06): 166-170. |
[5] | ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31. |
[6] | WU Xianyan, SHENTU Baoqing, MA Qian, JIN Limin, ZHANG Wei, XIE Sheng. Finite element analysis on structural failure mechanism ofthree-dimensional orthogonal woven fabrics subjected to impact of spherical projectile [J]. Journal of Textile Research, 2020, 41(08): 32-38. |
[7] | MA Ying, HE Tiantian, CHEN Xiang, LU Sheng, WANG Youqi. Micro-geometry modeling of three-dimensional orthogonal woven fabrics based on digital element approach [J]. Journal of Textile Research, 2020, 41(07): 59-66. |
[8] | . Grass cloth with traditional characteristic produced by modern technology [J]. Journal of Textile Research, 2016, 37(05): 37-41. |
|