Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 188-194.doi: 10.13475/j.fzxb.20210403607

• Comprehensive Review • Previous Articles     Next Articles

Research progress in non-contact fiber tension detection technology in spinning process

ZHANG Dongjian1, GAN Xuehui1(), YANG Chongchang1, HAN Fuyi2, LIU Xiangyu1, TAN Yuan1, LIAO He1, WANG Songlin3   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. Asset Management Division, Donghua University, Shanghai 201620, China
    3. Zhejiang Hengyi Petrochemical Co., Ltd., Hangzhou, Zhejiang 311215, China
  • Received:2021-04-13 Revised:2021-11-26 Online:2022-11-15 Published:2022-12-26
  • Contact: GAN Xuehui E-mail:xuehuig@dhu.edu.cn

Abstract:

Tension changes during fiber preparation have a significant impact on fiber product properties. Currently, the detection of fiber tension in the spinning process is still based on the contact method, which often causes fiber damage and seriously affects the quality stability, and service life of products. Therefore, combined with the development trend of the textile industry, the characteristics and limitations of contact fiber tension detection technology were introduced, especially the demand for high-speed spinning for fiber tension detection, the non-contact tension detection based on image processing, which are popularly researched, was summarized. The real-time and effectiveness of the detection are affected by the image processing technology due to the acquisition frequency and huge data operation. A non-contact real-time fiber tension detection technology based on laser Doppler Vibrometer technology was discussed from the aspects of the characteristics of high-speed spinning and the requirements of fiber tension detection, so as to provide an effective means for the study of fiber tension changes in the spinning process.

Key words: spinning process, non-contact, fiber tension detection, image processing, laser Doppler Vibrometer

CLC Number: 

  • TS152.7

Fig.1

Process of image edge extraction. (a) Target; (b) Transformed by gray scale; (c) Edge detection by Canny; (d) Transformed by morphology; (e) Edge tracking"

Fig.2

Schematic diagram of tension detection method based on vibration characteristics"

Fig.3

Forces acting on chemical filament in spinning process"

Fig.4

Fiber tension detection system based on laser Doppler Vibrometer"

[1] MOHAJERANNI A, HUI S Q, MIRZABAEI M, et al. Amazing types, properties, and applications of fibres in construction materials[J]. Materials, 2019, 12(16): 2513-2524.
doi: 10.3390/ma12162513
[2] YANG R H, YUE W, WANG S Y, et al. Tension of rotor-spun composite yam during spinning process[J]. International Journal of Nonlinear Sciences & Numerical Simulation, 2009, 10(7): 903-906.
[3] 王华平, 胡学超, 王毅, 等. 纺程加张力对PET纤维结构形成的影响[J]. 合成纤维, 1992, 21(4): 8-13.
WANG Huaping, HU Xuechao, WANG Yi, et al. Effect of on-line stress on polyester fiber structure[J]. Synthetic Fiber in China, 1992, 21(4): 8-13.
[4] KUO C, HUANG C C, GAO T C, et al. Recognition of fault process conditions based on spinline tension in melt spinning[J]. Textile Research Journal, 2014, 84(14): 1549-1557.
doi: 10.1177/0040517514521117
[5] 吴绥菊, 季晓雷. 纺纱张力测试的新方法[J]. 纺织学报, 2002, 23(5): 18-20.
WU Suiju, JI Xiaolei. New method of spinning tension test[J]. Journal of Textile Research, 2002, 23(5): 18-20.
[6] 刘行, 缪旭红, 赵帅权. 纱线张力测试方法研究进展[J]. 棉纺织技术, 2015, 43(1): 78-82.
LIU Xing, LIAO Xuhong, ZHAO Shuaiquan. Research progress of yarn tension test method[J]. Cotton Textile Technology, 2015, 43(1): 78-82.
[7] ZHOU Q H, WEI T L, QIU Y P, et al. Prediction and optimization of chemical fiber spinning tension based on grey system theory[J]. Textile Research Journal, 2019, 89(15): 3067-3079.
doi: 10.1177/0040517518807439
[8] CHATTOPADHYAY S K, VENUGOPAL B. An experimental verification on existence of air-drag force influencing yarn tension during rotor spinning[J]. Research Journal of Textile and Apparel, 2020, 24(1): 84-96.
doi: 10.1108/RJTA-09-2019-0042
[9] PODSIEDLIK W, WOJTYSIAK J. Multi-barrier electromagnetic tensioner for control of yarn tension in processing[J]. Fibres & Textiles in Eastern Europe, 2006, 14(5): 125-128.
[10] XU Q, MEI S Q, ZHANG Z M. Measurement method of yarn tension based on CCD technology[J]. Advanced Materials Research, 2011, 230(232): 89-93.
[11] TANG Z X, FRASER W B, WANG X. Modelling yarn balloon motion in ring spinning[J]. Applied Mathematical Modelling, 2007, 7(31): 1397-1410.
[12] SCHMID B, ARX R V, BRAND P. Integration of the yarn tension sensor to improve efficiency[J]. International Fiber Journal, 2006, 3(21): 64-65.
[13] PREYBY K. Influence of changes in yarn twist on the dynamics of yarn motion during spinning on a ring spinning machine[J]. Fibres & Textiles in Eastern Europe 2008, 16(2): 23-26.
[14] HOSSAIN M, ABDKADER A, NOCKE A. Measurement methods of dynamic yarn tension in a ring spinning process[J]. Fibres & Textiles in Eastern Europe, 2016, 24(1): 36-43.
[15] CHEN X L, MEI S Q, CHEN X B. Non-contact measurement of yarn tension in spinning process[J]. Applied Mechanics & Materials, 2014, 722(1): 367-372.
[16] 陈振, 梅顺齐, 李臻. 基于MatLab图像处理技术的纱线气圈张力测量方法研究[J]. 纺织科技进展, 2015 3: 18-21.
CHEN Zhen, MEI Shunqi, LI Zhen. Research on the measurement method of the yarn balloon tension based on MATLAB image processing technology[J]. Progress in Textile Science & Technology, 2015, 3: 18-21.
[17] 谢正权, 王新厚. 非接触式纱线卷绕张力动态检测方法的研究[J]. 中国测试, 2009, 35(4): 111-114.
XIE Zhengquan, WANG Xinhou. Non-contact dynamic measurement of yarn tension in winding process[J]. China Measurement & Testing Technology, 2009, 35(4): 111-114.
[18] WANG Q, LU C, HUANG R, et al. Computer vision for yarn microtension measurement[J]. Applied Optics, 2016, 55(9): 2393-2398.
doi: 10.1364/AO.55.002393
[19] BRAUCHLER A, ZIEGLER P, EBERHARD P, et al. Examination of polarization coupling in a plucked musical instrument string via experiments and simulations[J]. Acta Acustica, 2020, 4(3): 9-16.
doi: 10.1051/aacus/2020008
[20] ZUO W, HU Z, AN Z, et al. LDV-based measurement of 2D dynamic stress fields in transparent solids[J]. Journal of Sound and Vibration, 2020, 476: 1-11.
[21] JACKSON D A, GARCIASOUTO J A, POSADAROMAN J E, et al. Calibration of laser Doppler vibrometer exploiting Bessel functions of the first kind[J]. Electronics Letters, 2015, 51(14): 1100-1102.
doi: 10.1049/el.2015.0972
[22] LI Y, VERSTUYFT S, YURTSENER G, et al. Miniaturized laser Doppler vibrometers integrated on silicon-on-insulator with thermo-optic serrodyne optical frequency shifter[C]// International Conference on Group IV Photonics. San Diego: IEEE, 2012: 221-229.
[23] ROTHBERG S J, HALKON B J, TTRABASSI M, et al. Radial vibration measurements directly from rotors using laser vibrometry: the effects of surface roughness, instrument misalignments and pseudo-vibration[J]. Mechanical Systems & Signal Processing, 2012, 33(1): 109-131.
[24] MAIO D D, MAGI F, SEVER I A. Damage monitoring of composite components under vibration fatigue using scanning laser doppler vibrometer[J]. Experimental Mechanics, 2018, 58(3): 499-514.
doi: 10.1007/s11340-017-0367-y
[25] RUEL S, CHAD E, MELO L, et al. Field testing of a 3D automatic target recognition and pose estimation algorithm[J]. Proc Spie, 2004, 5426(12): 102-111.
[26] 黄贞, 吴林富. 便携式激光远程语音监听装置设计[J]. 激光与光电子学进展, 2012, 49(12): 98-101.
HUANG Zhen, WU Linfu. Laser remote voice detection system[J]. Laser & Optoelectronics Progress, 2012, 49(12): 98-101.
[27] GARY E S. Optical heterodyne profilometry[J]. Applied Optics, 1981, 20(4): 610-618.
doi: 10.1364/AO.20.000610 pmid: 20309165
[28] HUANG C C. Optical Heterodyne profilometer[J]. Proceedings of SPIE: The International Society for Optical Engineering, 1984, 23(4): 65-69.
[29] PIECZONKA L, AMBROZINSKI L, STASZEWSKI W J, et al. Damage detection in composite panels based on mode-converted lamb waves sensed using 3D laser scanning vibrometer[J]. Optics & Lasers in Engineering, 2017, 99(12): 80-87.
[30] YEKUTIEL AVARGEL, COHEN I. Speech measurements using a laser Doppler vibrometer sensor: Application to speech enhancement[C]// Hands-free Speech Communication and Microphone Arrays (HSCMA). Edinburgh:IEEE, 2011: 109-114.
[31] WANG C H, PEREZ C, SWALWELL J, et al. Characterizing the pressure field in a modified microbubble flow cytometer: Using a laser Doppler vibrometer to validate the internal pressure[J]. The Journal of the Acoustical Society of America, 2015, 137(4): 2423-2424.
[32] KOROBOV A I, IZOSIMOVA M Y. Nonlinear lamb waves in a metal plate with defects[J]. Acoustical Physics, 2006, 52(5): 589-597.
doi: 10.1134/S1063771006050137
[33] LIN S, GUO H, XU J. Actively adjustable step-type ultrasonic horns in longitudinal vibration[J]. Journal of Sound & Vibration, 2018, 419(1): 367-379.
[34] GROVES K H, BONELLO P. Improved identification of squeeze-film damper models for aeroengine vibration analysis[J]. Tribology International, 2010, 43(9): 1639-1649.
doi: 10.1016/j.triboint.2010.03.010
[35] MAEDA A, HAYASHI T. Defect imaging from a remote distance by using scanning laser source technique with acoustic microphones[J]. Materials Transactions, 2018, 59(2): 320-323.
doi: 10.2320/matertrans.M2017326
[36] 晏春回. 激光相干测振信号处理技术研究[D]. 长春: 中国科学院大学, 2019: 4-6.
YAN Chunhui. Research on signal processing technology of laser coherent vibration measurement[D]. Changchun: Changchun Institute of Optics, 2019: 4-6.
[37] KRONEBERGER S K J, HARTSOUGH B R. Monitor for indirect measurement of cable vibration frequency and tension[J]. Transactions of the American Society of Agricultural Engineers, 1992, 35(1): 341-346.
doi: 10.13031/2013.28609
[38] VEDRINES M, GASSMANN V, KNITTEL D. Moving web-tension determination by out-of-plane vibration measurements using a laser[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(1): 207-213.
doi: 10.1109/TIM.2008.928408
[39] 汤奥斐, 李淑娟, 李伦, 等. FAW加工过程线锯振动建模与实验验证[J]. 应用力学学报, 2018, 35(4): 750-756.
TANG Aofei, LI Shujuan, LI Lun, et al. Modeling and experimental verification of wire vibration for FAW cutting process[J]. Chinese Journal of Applied Mechanics, 2018, 35(4): 750-756.
[40] MA L, CHEN J, TANG W, et al. Vibration-based estimation of tension for an axially travelling web in roll-to-roll manufacturing[J]. Measurement Science & Technology, 2017, 29(1): 10.1088/1361-6501/aa9046.
doi: 10.1088/1361-6501/aa9046
[41] MA L, CHEN J, TANG W, et al. Transverse vibration and instability of axially travelling web subjected to non-homogeneous tension[J]. International Journal of Mechanical Sciences, 2017, 133(1): 752-758.
doi: 10.1016/j.ijmecsci.2017.09.047
[42] 马亮. 柔性基板卷到卷输送中横向振动建模与控制[D]. 武汉: 华中科技大学, 2018: 74-87.
MA Liang. Modeling and control study on the transverse vibration of an axially travelling flexible web in roll-to-roll manufacturing[D]. Wuhan: Huazhong University of Science and Technology, 2018: 74-87.
[43] ZHAO Z, LIU Y, GUO F, et al. Vibration control and boundary tension constraint of an axially moving string system[J]. Nonlinear Dynamics, 2017, 89(4): 2431-2440.
doi: 10.1007/s11071-017-3595-x
[44] LIN H, ZHOU C L, SHI J, et al. Transverse vibration of axially accelerating moving fabric: experiment and analysis[J]. Applied Mechanics & Materials, 2012, 226(228): 150-153.
[1] AN Yijin, XUE Wenliang, DING Yi, ZHANG Shunlian. Evaluation of textile color rubbing fastness based on image processing [J]. Journal of Textile Research, 2022, 43(12): 131-137.
[2] YUAN Yanhong, ZENG Hongming, MAO Muquan. Needle selector detection system based on image processing [J]. Journal of Textile Research, 2022, 43(10): 176-182.
[3] ZOU Zhuanyong, MIAO Lulu, DONG Zhengmei, ZHENG Guoquan, FU Na. Effect of air-jet vortex spinning process on properties of viscose/polyester core-spun yarns [J]. Journal of Textile Research, 2022, 43(08): 27-33.
[4] DENG Zhongmin, HU Haodong, YU Dongyang, WANG Wen, KE Wei. Density detection method of weft knitted fabrics making use of combined image frequency domain and spatial domain [J]. Journal of Textile Research, 2022, 43(08): 67-73.
[5] MA Yunjiao, WANG Lei, PAN Ruru, GAO Weidong. Calibration method of three-dimensional yarn evenness based on mirrored image [J]. Journal of Textile Research, 2022, 43(07): 55-59.
[6] ZHOU Qihong, PENG Yi, CEN Junhao, ZHOU Shenhua, LI Shujia. Yarn breakage location for yarn joining robot based on machine vision [J]. Journal of Textile Research, 2022, 43(05): 163-169.
[7] ZHANG Ronggen, FENG Pei, LIU Dashuang, ZHANG Junping, YANG Chongchang. Research on on-line detection system of broken filaments in industrial polyester filament [J]. Journal of Textile Research, 2022, 43(04): 153-159.
[8] LIU Hanbang, LI Xinrong, FENG Wenqian, WU Liubo, YUAN Ruwang. Grabbing performance of non-contact gripper based on Coanda effect for garment fabrics [J]. Journal of Textile Research, 2022, 43(02): 208-213.
[9] XIONG Jingjing, YANG Xue, SU Jing, WANG Hongbo. Testing method for fabric moisture conductivity based on image technology [J]. Journal of Textile Research, 2021, 42(12): 70-75.
[10] LÜ Wentao, LIN Qiqi, ZHONG Jiaying, WANG Chengqun, XU Weiqiang. Research progress of image processing technology for fabric defect detection [J]. Journal of Textile Research, 2021, 42(11): 197-206.
[11] XIA Xuwen, MENG Shuo, PAN Ruru, GAO Weidong. On-line detection of warp collision and reed embedding based on improved inter-frame difference method [J]. Journal of Textile Research, 2021, 42(06): 91-96.
[12] JIANG Yanting, YAN Qingshuai, XIN Binjie, GAO Cong, SHI Meiwu. Comparative study on testing methods for unidirectional water transport in fabrics [J]. Journal of Textile Research, 2021, 42(05): 51-58.
[13] LI Dongjie, GUO Shuai, YANG Liu. Yarn defect detection based on improved image threshold segmentation algorithm [J]. Journal of Textile Research, 2021, 42(03): 82-88.
[14] TANG Qianhui, WANG Lei, GAO Weidong. Detection of fabric shape retention based on image processing [J]. Journal of Textile Research, 2021, 42(03): 89-94.
[15] MENG Shuo, XIA Xuwen, PAN Ruru, ZHOU Jian, WANG Lei, GAO Weidong. Detection of fabric density uniformity based on convolutional neural network [J]. Journal of Textile Research, 2021, 42(02): 101-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .