Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 188-194.doi: 10.13475/j.fzxb.20210403607
• Comprehensive Review • Previous Articles Next Articles
ZHANG Dongjian1, GAN Xuehui1(), YANG Chongchang1, HAN Fuyi2, LIU Xiangyu1, TAN Yuan1, LIAO He1, WANG Songlin3
CLC Number:
[1] |
MOHAJERANNI A, HUI S Q, MIRZABAEI M, et al. Amazing types, properties, and applications of fibres in construction materials[J]. Materials, 2019, 12(16): 2513-2524.
doi: 10.3390/ma12162513 |
[2] | YANG R H, YUE W, WANG S Y, et al. Tension of rotor-spun composite yam during spinning process[J]. International Journal of Nonlinear Sciences & Numerical Simulation, 2009, 10(7): 903-906. |
[3] | 王华平, 胡学超, 王毅, 等. 纺程加张力对PET纤维结构形成的影响[J]. 合成纤维, 1992, 21(4): 8-13. |
WANG Huaping, HU Xuechao, WANG Yi, et al. Effect of on-line stress on polyester fiber structure[J]. Synthetic Fiber in China, 1992, 21(4): 8-13. | |
[4] |
KUO C, HUANG C C, GAO T C, et al. Recognition of fault process conditions based on spinline tension in melt spinning[J]. Textile Research Journal, 2014, 84(14): 1549-1557.
doi: 10.1177/0040517514521117 |
[5] | 吴绥菊, 季晓雷. 纺纱张力测试的新方法[J]. 纺织学报, 2002, 23(5): 18-20. |
WU Suiju, JI Xiaolei. New method of spinning tension test[J]. Journal of Textile Research, 2002, 23(5): 18-20. | |
[6] | 刘行, 缪旭红, 赵帅权. 纱线张力测试方法研究进展[J]. 棉纺织技术, 2015, 43(1): 78-82. |
LIU Xing, LIAO Xuhong, ZHAO Shuaiquan. Research progress of yarn tension test method[J]. Cotton Textile Technology, 2015, 43(1): 78-82. | |
[7] |
ZHOU Q H, WEI T L, QIU Y P, et al. Prediction and optimization of chemical fiber spinning tension based on grey system theory[J]. Textile Research Journal, 2019, 89(15): 3067-3079.
doi: 10.1177/0040517518807439 |
[8] |
CHATTOPADHYAY S K, VENUGOPAL B. An experimental verification on existence of air-drag force influencing yarn tension during rotor spinning[J]. Research Journal of Textile and Apparel, 2020, 24(1): 84-96.
doi: 10.1108/RJTA-09-2019-0042 |
[9] | PODSIEDLIK W, WOJTYSIAK J. Multi-barrier electromagnetic tensioner for control of yarn tension in processing[J]. Fibres & Textiles in Eastern Europe, 2006, 14(5): 125-128. |
[10] | XU Q, MEI S Q, ZHANG Z M. Measurement method of yarn tension based on CCD technology[J]. Advanced Materials Research, 2011, 230(232): 89-93. |
[11] | TANG Z X, FRASER W B, WANG X. Modelling yarn balloon motion in ring spinning[J]. Applied Mathematical Modelling, 2007, 7(31): 1397-1410. |
[12] | SCHMID B, ARX R V, BRAND P. Integration of the yarn tension sensor to improve efficiency[J]. International Fiber Journal, 2006, 3(21): 64-65. |
[13] | PREYBY K. Influence of changes in yarn twist on the dynamics of yarn motion during spinning on a ring spinning machine[J]. Fibres & Textiles in Eastern Europe 2008, 16(2): 23-26. |
[14] | HOSSAIN M, ABDKADER A, NOCKE A. Measurement methods of dynamic yarn tension in a ring spinning process[J]. Fibres & Textiles in Eastern Europe, 2016, 24(1): 36-43. |
[15] | CHEN X L, MEI S Q, CHEN X B. Non-contact measurement of yarn tension in spinning process[J]. Applied Mechanics & Materials, 2014, 722(1): 367-372. |
[16] | 陈振, 梅顺齐, 李臻. 基于MatLab图像处理技术的纱线气圈张力测量方法研究[J]. 纺织科技进展, 2015 3: 18-21. |
CHEN Zhen, MEI Shunqi, LI Zhen. Research on the measurement method of the yarn balloon tension based on MATLAB image processing technology[J]. Progress in Textile Science & Technology, 2015, 3: 18-21. | |
[17] | 谢正权, 王新厚. 非接触式纱线卷绕张力动态检测方法的研究[J]. 中国测试, 2009, 35(4): 111-114. |
XIE Zhengquan, WANG Xinhou. Non-contact dynamic measurement of yarn tension in winding process[J]. China Measurement & Testing Technology, 2009, 35(4): 111-114. | |
[18] |
WANG Q, LU C, HUANG R, et al. Computer vision for yarn microtension measurement[J]. Applied Optics, 2016, 55(9): 2393-2398.
doi: 10.1364/AO.55.002393 |
[19] |
BRAUCHLER A, ZIEGLER P, EBERHARD P, et al. Examination of polarization coupling in a plucked musical instrument string via experiments and simulations[J]. Acta Acustica, 2020, 4(3): 9-16.
doi: 10.1051/aacus/2020008 |
[20] | ZUO W, HU Z, AN Z, et al. LDV-based measurement of 2D dynamic stress fields in transparent solids[J]. Journal of Sound and Vibration, 2020, 476: 1-11. |
[21] |
JACKSON D A, GARCIASOUTO J A, POSADAROMAN J E, et al. Calibration of laser Doppler vibrometer exploiting Bessel functions of the first kind[J]. Electronics Letters, 2015, 51(14): 1100-1102.
doi: 10.1049/el.2015.0972 |
[22] | LI Y, VERSTUYFT S, YURTSENER G, et al. Miniaturized laser Doppler vibrometers integrated on silicon-on-insulator with thermo-optic serrodyne optical frequency shifter[C]// International Conference on Group IV Photonics. San Diego: IEEE, 2012: 221-229. |
[23] | ROTHBERG S J, HALKON B J, TTRABASSI M, et al. Radial vibration measurements directly from rotors using laser vibrometry: the effects of surface roughness, instrument misalignments and pseudo-vibration[J]. Mechanical Systems & Signal Processing, 2012, 33(1): 109-131. |
[24] |
MAIO D D, MAGI F, SEVER I A. Damage monitoring of composite components under vibration fatigue using scanning laser doppler vibrometer[J]. Experimental Mechanics, 2018, 58(3): 499-514.
doi: 10.1007/s11340-017-0367-y |
[25] | RUEL S, CHAD E, MELO L, et al. Field testing of a 3D automatic target recognition and pose estimation algorithm[J]. Proc Spie, 2004, 5426(12): 102-111. |
[26] | 黄贞, 吴林富. 便携式激光远程语音监听装置设计[J]. 激光与光电子学进展, 2012, 49(12): 98-101. |
HUANG Zhen, WU Linfu. Laser remote voice detection system[J]. Laser & Optoelectronics Progress, 2012, 49(12): 98-101. | |
[27] |
GARY E S. Optical heterodyne profilometry[J]. Applied Optics, 1981, 20(4): 610-618.
doi: 10.1364/AO.20.000610 pmid: 20309165 |
[28] | HUANG C C. Optical Heterodyne profilometer[J]. Proceedings of SPIE: The International Society for Optical Engineering, 1984, 23(4): 65-69. |
[29] | PIECZONKA L, AMBROZINSKI L, STASZEWSKI W J, et al. Damage detection in composite panels based on mode-converted lamb waves sensed using 3D laser scanning vibrometer[J]. Optics & Lasers in Engineering, 2017, 99(12): 80-87. |
[30] | YEKUTIEL AVARGEL, COHEN I. Speech measurements using a laser Doppler vibrometer sensor: Application to speech enhancement[C]// Hands-free Speech Communication and Microphone Arrays (HSCMA). Edinburgh:IEEE, 2011: 109-114. |
[31] | WANG C H, PEREZ C, SWALWELL J, et al. Characterizing the pressure field in a modified microbubble flow cytometer: Using a laser Doppler vibrometer to validate the internal pressure[J]. The Journal of the Acoustical Society of America, 2015, 137(4): 2423-2424. |
[32] |
KOROBOV A I, IZOSIMOVA M Y. Nonlinear lamb waves in a metal plate with defects[J]. Acoustical Physics, 2006, 52(5): 589-597.
doi: 10.1134/S1063771006050137 |
[33] | LIN S, GUO H, XU J. Actively adjustable step-type ultrasonic horns in longitudinal vibration[J]. Journal of Sound & Vibration, 2018, 419(1): 367-379. |
[34] |
GROVES K H, BONELLO P. Improved identification of squeeze-film damper models for aeroengine vibration analysis[J]. Tribology International, 2010, 43(9): 1639-1649.
doi: 10.1016/j.triboint.2010.03.010 |
[35] |
MAEDA A, HAYASHI T. Defect imaging from a remote distance by using scanning laser source technique with acoustic microphones[J]. Materials Transactions, 2018, 59(2): 320-323.
doi: 10.2320/matertrans.M2017326 |
[36] | 晏春回. 激光相干测振信号处理技术研究[D]. 长春: 中国科学院大学, 2019: 4-6. |
YAN Chunhui. Research on signal processing technology of laser coherent vibration measurement[D]. Changchun: Changchun Institute of Optics, 2019: 4-6. | |
[37] |
KRONEBERGER S K J, HARTSOUGH B R. Monitor for indirect measurement of cable vibration frequency and tension[J]. Transactions of the American Society of Agricultural Engineers, 1992, 35(1): 341-346.
doi: 10.13031/2013.28609 |
[38] |
VEDRINES M, GASSMANN V, KNITTEL D. Moving web-tension determination by out-of-plane vibration measurements using a laser[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(1): 207-213.
doi: 10.1109/TIM.2008.928408 |
[39] | 汤奥斐, 李淑娟, 李伦, 等. FAW加工过程线锯振动建模与实验验证[J]. 应用力学学报, 2018, 35(4): 750-756. |
TANG Aofei, LI Shujuan, LI Lun, et al. Modeling and experimental verification of wire vibration for FAW cutting process[J]. Chinese Journal of Applied Mechanics, 2018, 35(4): 750-756. | |
[40] |
MA L, CHEN J, TANG W, et al. Vibration-based estimation of tension for an axially travelling web in roll-to-roll manufacturing[J]. Measurement Science & Technology, 2017, 29(1): 10.1088/1361-6501/aa9046.
doi: 10.1088/1361-6501/aa9046 |
[41] |
MA L, CHEN J, TANG W, et al. Transverse vibration and instability of axially travelling web subjected to non-homogeneous tension[J]. International Journal of Mechanical Sciences, 2017, 133(1): 752-758.
doi: 10.1016/j.ijmecsci.2017.09.047 |
[42] | 马亮. 柔性基板卷到卷输送中横向振动建模与控制[D]. 武汉: 华中科技大学, 2018: 74-87. |
MA Liang. Modeling and control study on the transverse vibration of an axially travelling flexible web in roll-to-roll manufacturing[D]. Wuhan: Huazhong University of Science and Technology, 2018: 74-87. | |
[43] |
ZHAO Z, LIU Y, GUO F, et al. Vibration control and boundary tension constraint of an axially moving string system[J]. Nonlinear Dynamics, 2017, 89(4): 2431-2440.
doi: 10.1007/s11071-017-3595-x |
[44] | LIN H, ZHOU C L, SHI J, et al. Transverse vibration of axially accelerating moving fabric: experiment and analysis[J]. Applied Mechanics & Materials, 2012, 226(228): 150-153. |
[1] | AN Yijin, XUE Wenliang, DING Yi, ZHANG Shunlian. Evaluation of textile color rubbing fastness based on image processing [J]. Journal of Textile Research, 2022, 43(12): 131-137. |
[2] | YUAN Yanhong, ZENG Hongming, MAO Muquan. Needle selector detection system based on image processing [J]. Journal of Textile Research, 2022, 43(10): 176-182. |
[3] | ZOU Zhuanyong, MIAO Lulu, DONG Zhengmei, ZHENG Guoquan, FU Na. Effect of air-jet vortex spinning process on properties of viscose/polyester core-spun yarns [J]. Journal of Textile Research, 2022, 43(08): 27-33. |
[4] | DENG Zhongmin, HU Haodong, YU Dongyang, WANG Wen, KE Wei. Density detection method of weft knitted fabrics making use of combined image frequency domain and spatial domain [J]. Journal of Textile Research, 2022, 43(08): 67-73. |
[5] | MA Yunjiao, WANG Lei, PAN Ruru, GAO Weidong. Calibration method of three-dimensional yarn evenness based on mirrored image [J]. Journal of Textile Research, 2022, 43(07): 55-59. |
[6] | ZHOU Qihong, PENG Yi, CEN Junhao, ZHOU Shenhua, LI Shujia. Yarn breakage location for yarn joining robot based on machine vision [J]. Journal of Textile Research, 2022, 43(05): 163-169. |
[7] | ZHANG Ronggen, FENG Pei, LIU Dashuang, ZHANG Junping, YANG Chongchang. Research on on-line detection system of broken filaments in industrial polyester filament [J]. Journal of Textile Research, 2022, 43(04): 153-159. |
[8] | LIU Hanbang, LI Xinrong, FENG Wenqian, WU Liubo, YUAN Ruwang. Grabbing performance of non-contact gripper based on Coanda effect for garment fabrics [J]. Journal of Textile Research, 2022, 43(02): 208-213. |
[9] | XIONG Jingjing, YANG Xue, SU Jing, WANG Hongbo. Testing method for fabric moisture conductivity based on image technology [J]. Journal of Textile Research, 2021, 42(12): 70-75. |
[10] | LÜ Wentao, LIN Qiqi, ZHONG Jiaying, WANG Chengqun, XU Weiqiang. Research progress of image processing technology for fabric defect detection [J]. Journal of Textile Research, 2021, 42(11): 197-206. |
[11] | XIA Xuwen, MENG Shuo, PAN Ruru, GAO Weidong. On-line detection of warp collision and reed embedding based on improved inter-frame difference method [J]. Journal of Textile Research, 2021, 42(06): 91-96. |
[12] | JIANG Yanting, YAN Qingshuai, XIN Binjie, GAO Cong, SHI Meiwu. Comparative study on testing methods for unidirectional water transport in fabrics [J]. Journal of Textile Research, 2021, 42(05): 51-58. |
[13] | LI Dongjie, GUO Shuai, YANG Liu. Yarn defect detection based on improved image threshold segmentation algorithm [J]. Journal of Textile Research, 2021, 42(03): 82-88. |
[14] | TANG Qianhui, WANG Lei, GAO Weidong. Detection of fabric shape retention based on image processing [J]. Journal of Textile Research, 2021, 42(03): 89-94. |
[15] | MENG Shuo, XIA Xuwen, PAN Ruru, ZHOU Jian, WANG Lei, GAO Weidong. Detection of fabric density uniformity based on convolutional neural network [J]. Journal of Textile Research, 2021, 42(02): 101-106. |