Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (04): 47-54.doi: 10.13475/j.fzxb.20210405508

• Textile Engineering • Previous Articles     Next Articles

Mechanical property analysis of yarn pull-out from aramid plain woven fabrics based on micro-geometry

MA Ying1, LIU Yueyan1, ZHAO Yang1,2, CHEN Xiang1, LU Sheng1,2(), HU Hanjie3   

  1. 1. School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    2. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
    3. The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing 401120, China
  • Received:2021-04-20 Revised:2021-07-20 Online:2022-04-15 Published:2022-04-20
  • Contact: LU Sheng E-mail:lusheng@cqupt.edu.cn

Abstract:

In order to study the mechanical properties and parametric influence of yarn pull-out from aramid plain woven fabrics, an analytical model was proposed to provide the theoretical bases for subsequent numerical modeling. The micro-geometry of the plain woven fabric was generated through weaving process simulation using the digital element approach. On this basis, the yarn pull-out behavior of a single yarn was simulated by ABAQUS. One solid element is used through the thickness of the yarn and the yarn material properties were defined. The effect of transverse pre-loading and yarn-to-yarn friction on pull-out behavior and energy transfer mechanism were obtained. The simulation results show that the differences between the simulated peak pull-out force and the peak transverse force compared to the experimental ones are 5.96% and -8.51%, respectively. The external energy is mainly dissipated in the form of frictional energy. When the transverse pre-loading and yarn-to-yarn friction coefficient increases, the growth rate of the yarn peak pull-out force gradually decreases. The proposed model is capable of predicting the yarn pull-out performance with reasonable accuracy.

Key words: aramid plain woven fabric, micro-geometry, yarn pull-out, peak pull-out force, digital element approach

CLC Number: 

  • TB332

Fig.1

Schematic diagram of yarn pull-out device(a) and process (b)"

Fig.2

Discrete process of plain weave fabric"

Fig.3

Calculating schematic diagram of yarn cross-section profile. (a) Outer yarn profile; (b) Inner yarn profile"

Fig.4

Schematic diagram of calculating yarn surface mesh"

Fig.5

Comparison of fabric surface and yarn cross-section shape. (a) Actual fabric surface; (b) Numerical fabric model surface; (c) Comparison between actual and numerical yarn cross-section shape"

Tab.1

Parameters of yarn orthotropic linear elastic material"

E11/
GPa
E22/
GPa
E33/
GPa
G12/
GPa
G13/
GPa
G23/
GPa
ν12 ν13 ν23
84 4.2 4.2 4.2 4.2 4.2 0 0 0

Fig.6

Schematic diagram of mesh division. (a) Mesh unit division; (b) Meshed yarn cross-sectional shape with local seed distribution"

Fig.7

Energy-time curves"

Fig.8

Simulation and experimental pull-out force-displacement curves"

Fig.9

Simulation and experimental pre-tension force-displacement curves"

Fig.10

Effect of transverse pre-tension on pull-out force. (a) Pull-out mechanical and displacement curve; (b) Linear fitting of peak pull-out force curve"

Tab.2

Linear fitting of peak values under various friction coefficients"

横向预紧力/N 摩擦因数 斜率k 截距 b
100 0.10 -0.071 08 0.925 19
0.15 -0.092 60 1.261 49
0.20 -0.124 43 1.684 30
200 0.10 -0.089 83 1.201 42
0.15 -0.122 35 1.681 81
0.20 -0.177 31 2.337 95
300 0.10 -0.103 80 1.427 54
0.15 -0.151 86 2.059 79
0.20 -0.212 70 2.806 47

Fig.11

Effect of friction coefficient on yarn pull-out force"

[1] 练军, 顾伯洪, 王善元. 织物及其复合材料的弹道冲击性能[J]. 纺织学报, 2006, 27(8): 109-112.
LIAN Jun, GU Bohong, WANG Shanyuan. Ballistic impact properties of the fabric and its composite laminates[J]. Journal of Textile Research, 2006, 27(8): 109-112.
[2] KIRKWOOD K M, KIRKWOOD J E, LEE Y S, et al. Yarn pull-out as a mechanism for dissipation of ballistic impact energy in Kevlar KM-2:part I: quasi-static characterization of yarn pull-out[J]. Textile Research Journal, 2004, 74(10): 920-928.
doi: 10.1177/004051750407401012
[3] KIRKWOOD J E, KIRKWOOD K M, LEE Y S, et al. Yarn pull-out as a mechanism for dissipation of ballistic impact energy in Kevlar KM-2 fabric:part II: prediction of ballistic performance[J]. Textile Research Journal, 2004, 74(11): 939-948.
doi: 10.1177/004051750407401101
[4] NILAKANTAN G, GILLESPIE J W. Yarn pull-out behavior of plain woven Kevlar fabrics: effect of yarn sizing,pull-out rate,and fabric pre-tension[J]. Composite Structures, 2013, 101(15): 215-224.
doi: 10.1016/j.compstruct.2013.02.018
[5] ZHU D J, SORANAKOM C, MOBASHER B, et al. Experimental study and modeling of single yarn pull-out behavior of Kevlar®49 fabric[J]. Composites Part A: Applied Science and Manufacturing, 2012, 42(7): 868-879.
doi: 10.1016/j.compositesa.2011.03.017
[6] BAI R X, MA Y, LEI Z K, et al. Shear deformation and energy absorption analysis of flexible fabric in yarn pullout test[J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 1-14.
[7] DONG Z X, SUN C T. Testing and modeling of yarn pull-out in plain woven Kevlar fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(12): 1863-1869.
doi: 10.1016/j.compositesa.2009.04.019
[8] BILISIK K, KORKMAZ M. Multilayered and multidirectionally-stitched aramid woven fabric structures: experimental characterization of ballistic performance by considering the yarn pull-out test[J]. Textile Research Journal, 2010, 80(16): 1697-1720.
doi: 10.1177/0040517510365954
[9] BILISIK K, KORKMAZ M. Single and multiple yarn pull-outs on aramid woven fabric structures[J]. Textile Research Journal, 2010, 81(8): 847-864.
doi: 10.1177/0040517510391703
[10] BILISIK K. Properties of yarn pull-out in para-aramid fabric structure and analysis by statistical model[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(12): 1930-1942.
doi: 10.1016/j.compositesa.2011.08.018
[11] BILISIK K, YOLACAN G. Single and multiple yarn pull-out on E-glass woven fabric structures[J]. Textile Research Journal, 2011, 81(19): 2043-2055.
doi: 10.1177/0040517511414976
[12] BILISIK K. Experimental determination of fabric shear by yarn pull-out method[J]. Textile Research Journal, 2011, 82(10):1050-1064.
doi: 10.1177/0040517511431318
[13] VALIZADEH M, LOMOV S. Finite element simulation of a yarn pullout test for plain woven fabrics[J]. Textile Research Journal, 2010, 80(10): 892-903.
doi: 10.1177/0040517509346436
[14] NILAKANTAN G. Filament-level modeling of Kevlar KM2 yarns for ballistic impact studies[J]. Composite Structures, 2013, 104: 1-13.
doi: 10.1016/j.compstruct.2013.04.001
[15] SORBO P D, GIRARDOT J, DAU F, et al. Numerical investigations on a yarn structure at the microscale towards scale transition[J]. Composite Structures, 2018, 183: 489-498.
doi: 10.1016/j.compstruct.2017.05.018
[16] WANG Y, SUN X. Digital-element simulation of textile processes[J]. Composites Science and Technology, 2001, 61(2): 311-319.
doi: 10.1016/S0266-3538(00)00223-2
[17] ZHOU G, SUN X, WANG Y. Multi-chain digital element analysis in textile mechanics[J]. Composites Science and Technology, 2004, 64(2): 239-244.
doi: 10.1016/S0266-3538(03)00258-6
[18] MIAO Y, ZHOU E, WANG Y, et al. Mechanics of textile composites: micro-geometry[J]. Composites Science and Technology, 2008, 68(7/8): 1671-1678.
doi: 10.1016/j.compscitech.2008.02.018
[19] HUANG L, WANG Y, MIAO Y, et al. Dynamic relaxation approach with periodic boundary conditions in determining the 3-D woven textile micro-geometry[J]. Composite Structures, 2013, 106(12): 417-425.
doi: 10.1016/j.compstruct.2013.05.057
[20] GREEN S D, LONG A C, SAID B, et al. Numerical modelling of 3D woven preform deformations[J]. Composite Structures, 2014, 108: 747-756.
doi: 10.1016/j.compstruct.2013.10.015
[21] ISART N, SAID B, IVANOV D, et al. Internal geometric modelling of 3D woven composites: a comparison between different approaches[J]. Composite Structures, 2015, 132: 1219-1230.
doi: 10.1016/j.compstruct.2015.07.007
[22] WANG Y, MIAO Y, SWENSON D, et al. Digital element approach for simulating impact and penetration of textiles[J]. International Journal of Impact Engineering, 2010, 37(5): 552-560.
doi: 10.1016/j.ijimpeng.2009.10.009
[23] WANG Y, MIAO Y, HUANG L, et al. Effect of the inter-fiber friction on fiber damage propagation and ballistic limit of 2-D woven fabrics under a fully confined boundary condition[J]. International Journal of Impact Engineering, 2016, 97: 66-78.
doi: 10.1016/j.ijimpeng.2016.06.007
[24] ZHU D J, MOBASHER B, RAJAN S D. Dynamic tensile testing of Kevlar 49 fabrics[J]. Journal of Materials in Civil Engineering, 2010, 23(3): 230-239.
doi: 10.1061/(ASCE)MT.1943-5533.0000156
[25] BAI R X, MA Y, LEI Z K, et al. Energy analysis of fabric impregnated by shear thickening fluid in yarn pullout test[J]. Composites Part B: Engineering, 2019, 174: 1-11.
[26] GASSER A, BOISSE P, HANKLAR S. Mechanical behaviour of dry fabric reinforcements: 3D simulations versus biaxial tests[J]. Computation Materials Science, 2000, 17(1): 7-20.
doi: 10.1016/S0927-0256(99)00086-5
[1] MA Ying, HE Tiantian, CHEN Xiang, LU Sheng, WANG Youqi. Micro-geometry modeling of three-dimensional orthogonal woven fabrics based on digital element approach [J]. Journal of Textile Research, 2020, 41(07): 59-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!