Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 143-148.doi: 10.13475/j.fzxb.20210405906

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Comparison of test methods for permethrin content in polyamide fabrics

CHENG Lüzhu1, WANG Zongqian1(), SHENG Hongmei2, ZHONG Hui2, XIA Liping3   

  1. 1. School of Textiles and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Xuancheng K & O Textile Co., Ltd., Xuancheng, Anhui 242000, China
    3. Chemical Test Center of Transfar Zhilian Co., Ltd., Hangzhou, Zhejiang 311215, China
  • Received:2021-04-21 Revised:2022-06-20 Online:2022-09-15 Published:2022-09-26
  • Contact: WANG Zongqian E-mail:wzqian@ahpu.edu.cn

Abstract:

In order to study the characteristics of different methods for testing and characterization of permethrin content in textiles, and to explore rapid test methods, permethrin mosquito repellent was used to finish polyamide fabrics by spraying. The polyamide fabrics treated with different concentrations of permethrin were characterized by digital microsystem, scanning electron microscope, Fourier infrared spectrometer, gas chromatography, X-ray photoelectron spectrometer and ultraviolet (UV)/visible/near infrared spectrometer. The results show that the use of optical, scanning electron microscope images and infrared spectroscopy is able to quickly characterize the surface characteristics of polyamide fabrics after permethrin treatment, but it is difficult to achieve accurate quantitative analysis. Gas chromatography and X-ray photoelectron spectroscopy can be used for quantitative analysis, but they are time-consuming with high cost. UV absorption spectrum can meet the rapid quantitative analysis of permethrin content in polyamide fabric, and the test results have a high agreement with the test results of X-ray photoelectron spectroscopy, with a fitting coefficient of 0.985.

Key words: permethrin, polyamide fabric, ultraviolet absorption spectrum, X-ray photoelectron spectroscopy, quantitative analysis

CLC Number: 

  • TS195.5

Fig.1

Schematic diagram of permethrin finished polyamide fabric by spray method"

Fig.2

Optical images of polyamide fabric(×500). (a) Original polyamide fabric; (b) 1 g/L; (c) 2 g/L; (d)3 g/L; (e)4 g/L; (f)5 g/L"

Fig.3

SEM images of polyamide fabric. (a) Original polyamide fabric; (b) 1 g/L; (c) 2 g/L; (d) 3 g/L; (e)4 g/L; (f) 5 g/L"

Fig.4

Infrared spectra of polyamide fabric"

Fig.5

Analysis of permethrin peak area and its content in different polyamide fabrics"

Fig.6

X-ray photoelectron spectoscopy of polyamide fabric"

Fig.7

Percentage of chlorine atoms on surface of permethrin finished polyamide fabric"

Fig.8

UV absorption spectra of polyamide fabric finished with different concentrations of permethrin"

Fig.9

Fitting curve of chlorine atom content and UV absorbance value of finished polyamide fabric"

Tab.1

Comparison of test results of permethrin content by different test methods"

测试方法 原理 定性 定量 方差/% 单样测试耗时 单次测试所需样品 测试成本
图像法 表面形貌 × ? 极少
红外光谱法 红外特征吸收 ? 适中
气相色谱法 特征吸收和峰面积 1.14
X射线光电子能谱法 氯元素特征吸收 2.07
紫外光谱法 特征吸收 2.25 少,对样品无损伤
[1] FRANKLINOS L H V, JONES K E, REDDING D W, et al. The effect of global change on mosquito-borne disease[J]. The Lancet Infectious Diseases, 2019, 19(9): 302-312.
[2] BAIK L S, CARLSON J R. The mosquito taste system and disease control[J]. Proceedings of the National Academy of Sciences, 2020, 117(52): 32848-32856.
doi: 10.1073/pnas.2013076117
[3] ZHANG Z, JING Q, CHEN Z, et al. The increasing menace of dengue in Guangzhou, 2001-2016: the most important epicenter in mainland China[J]. BMC Infectious Diseases, 2019, 19(1): 1-8.
doi: 10.1186/s12879-018-3567-x
[4] EI-SAYED A A, AMR A, KAMEL O M H M, et al. Eco-friendly fabric modification based on AgNPs@moringa for mosquito repellent applications[J]. Cellulose, 2020, 27(14): 8429-8442.
doi: 10.1007/s10570-020-03355-8
[5] SIBANDA M, FOCKE W, BRAACK L, et al. Bicomponent fibres for controlled release of volatile mosquito repellents[J]. Materials Science and Engineering: C, 2018, 91: 754-761.
doi: 10.1016/j.msec.2018.06.016
[6] CIERA L, BELADJAL L, LANDUYT L V, et al. Electrospinning repellents in polyvinyl alcohol-nanofibres for obtaining mosquito-repelling fabrics[J]. Royal Society Open Science, 2019. DOI: 10.1098/rsos.182139.
doi: 10.1098/rsos.182139
[7] ANUAR A A, YUSOF N. Methods of imparting mosquito repellent agents and the assessing mosquito repellency on textile[J]. Fashion and Textiles, 2016, 3(1): 1-14.
doi: 10.1186/s40691-015-0053-6
[8] MARTINS T G, CHIAPETTA S C, CASSELLA R J. Extraction of permethrin from impregnated fabrics for determination by ultra-high performance liquid chromatography with diode array detection[J]. Journal of Environmental Science and Health: Part B, 2021, 56(5): 483-489.
doi: 10.1080/03601234.2021.1913014
[9] 陆必泰, 朱义. 纺织品避蚊保健整理剂的研制及应用工艺[J]. 纺织学报, 2006, 27(2): 92-94.
LU Bitai, ZHU Yi. Development and application of mosquito repellent health care finishing agent for textiles[J]. Journal of Textile Research, 2006, 27 (2): 92-94.
doi: 10.1177/004051755702700202
[10] KEGEL P, LETZEL S, ROSSBACH B. Biomonitoring in wearers of permethrin impregnated battle dress uniforms in Afghanistan and Germany[J]. Occupational and Environmental Medicine, 2014, 71(2): 112-117.
doi: 10.1136/oemed-2012-101279
[11] RICHARDS S L, AGADA N, BALANAY J A G, et al. Permethrin treated clothing to protect outdoor workers: evaluation of different methods for mosquito exposure against populations with differing resistance status[J]. Pathogens and Global Health, 2018, 112(1): 13-21.
doi: 10.1080/20477724.2018.1437692
[12] KARANDIKAR P S, RAJPUT J D, BAGUL S D, et al. Controlled release study of phenol formaldehyde based microcapsules containing various loading percentage of core cypermethrin at different agitation rates[J]. Polymer Bulletin, 2019, 76(5): 2519-2536.
doi: 10.1007/s00289-018-2508-6
[13] SEGAL-ROSENHEIMER M, DUBOWSKI Y. Heterogeneous ozonolysis of cypermethrin using real-time monitoring FTIR techniques[J]. The Journal of Physical Chemistry C, 2007, 111(31): 11682-11691.
doi: 10.1021/jp072937t
[14] ARMENTA S, QUINTAS G, GARRIGUES S, et al. A validated and fast procedure for FTIR determination of cypermethrin and chlorpyrifos[J]. Talanta, 2005, 67(3): 634-639.
doi: 10.1016/j.talanta.2005.03.008
[15] 徐琳, 王乃岩. ATR/FTIR技术和红外透射法用于蔬菜中农药含量测定的比较研究[J]. 红外技术, 2008, 30(12): 702-705.
XU Lin, WANG Naiyan. Comparative study of ATR/FTIR and infrared transmission method for determination of pesticide content in vegetables[J]. Infrared Technology, 2008, 30 (12): 702-705.
[16] GARCIA E, GARCIA A, BARBAS C. Validated HPLC method for quantifying permethrin in pharmaceutical formulations[J]. Journal of Pharmaceutical and Biomedical Analysis, 2001, 24(5/6): 999-1004.
doi: 10.1016/S0731-7085(00)00544-6
[17] ARAYNE M S, SULTANA N, HUSSAIN F. Validated RP-HPLC method for determination of permethrin in bulk and topical preparations using UV-vis detector[J]. Journal of Chromatographic Science, 2011, 49(4): 287-291.
doi: 10.1093/chrsci/49.4.287
[18] MULLER K, SCHEUERER Z, FLORIAN V, et al. Comparison of test methods for oxygen permeability: optical method versus carrier gas method[J]. Polymer Testing, 2017, 63: 126-132.
doi: 10.1016/j.polymertesting.2017.08.006
[1] WANG Zongqian, CHENG Lüzhu, JIN Xianhua, XIA Liping. Testing method for permethrin content in cotton fabrics based on use of ultraviolet spectroscopy [J]. Journal of Textile Research, 2022, 43(06): 127-132.
[2] JIN Wenjie, CHENG Xianwei, GUAN Jinping, CHEN Guoqiang. Sulfanilamide finishing to polyamide 6 fabrics for flame retardant and anti-dripping performance [J]. Journal of Textile Research, 2022, 43(02): 171-175.
[3] FANG Shuaijun, ZHENG Peixiao, CHENG Shuangjuan, LI Huanhuan, QIAN Hongfei. Establishment of mathematical model and quantitative analysis for grafting rate of methylacrylamide grafted silk [J]. Journal of Textile Research, 2022, 43(02): 156-161.
[4] LI Chang, FANG Kuanjun, LIU Xiuming, AN Fangfang, LIANG Yingchao, LIU Hao. Effect of cationic modification in hydrophobic system on ink droplet spreading on cotton/polyamide fabrics [J]. Journal of Textile Research, 2021, 42(09): 112-119.
[5] . Model establishment and validation of waste polyester fiber products based on near infrared quantitative analysis [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 63-68.
[6] . Dynamic characteristics and response of fluid  sloshing in beaker assembly in blended fabric quantitative analysis system [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 132-138.
[7] . Ultrasonic assisted cotton/polyester blended fibers quantitative analysis [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 27-31.
[8] . Influence of sample weight on prediction of far-infrared fiber content based on near-infrared spectrodscopy [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(5): 19-0.
[9] . Analysis of factors affecting cutting scheme based on analytical hierarchy process [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 148-152.
[10] WANG Daoxing. A probe to the calculation model of the warp beem linear speed of electronic let-off system [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(12): 110-112.
[11] LIU Xiu-jun;ZHAO Nai-qin. Surface modification of activated carbon fiber by nanometer MgO [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(8): 1-3.
[12] LU Bi_tai;ZHU Yi. Development and application of anophelifuge and health-care finishing agents on fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 92-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!