Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 200-206.doi: 10.13475/j.fzxb.20210407208
• Comprehensive Review • Previous Articles Next Articles
NIE Wenqi1,2(), SUN Jiangdong1, XU Shuai1, ZHENG Xianhong1, XU Zhenzhen1
CLC Number:
[1] |
RUCKDASHEL R R, VENKATARAMAN D P, JAY H. Smart textiles: a toolkit to fashion the future[J]. Journal of Applied Physics, 2021.DOI: 10.1063/5.0024006.
doi: 10.1063/5.0024006 |
[2] |
CHERENACK K, VAN P L. Smart textiles: challenges and opportunities[J]. Journal of Applied Physics, 2012.DOI: 10.1063/1.4742728.
doi: 10.1063/1.4742728 |
[3] |
SHIRSHOVA N, QIAN H, SHAFFER M S P, et al. Structural composite supercapacitors[J]. Composites Part A: Applied Science and Manufacturing, 2013, 46: 96-107.
doi: 10.1016/j.compositesa.2012.10.007 |
[4] |
GU X, CHAO L, FEI L, et al. A conductive interwoven bamboo carbon fiber membrane for Li-S batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9502-9509.
doi: 10.1039/C5TA00681C |
[5] |
GUAN C, ZHAO W, HU Y, et al. High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes[J]. Advanced Energy Materials, 2016.DOI: 10.1002/aenm.201601034.
doi: 10.1002/aenm.201601034. |
[6] |
MORETON R, WATT W. The spinning of polyacrylonitrile fibres in clean room conditions for the production of carbon fibres[J]. Carbon, 1974, 12(5): 543-554.
doi: 10.1016/0008-6223(74)90056-6 |
[7] |
SAWADA K, SAKAI S, TAYA M. Fabrication of ultrafine carbon fibers possessing a nanoporous structure from electrospun polyvinyl alcohol fibers containing silica nanoparticles[J]. Journal of Nanomaterials, 2014.DOI: 10.1155/2014/487943.
doi: 10.1155/2014/487943 |
[8] |
KIM J W, LEE J S. Preparation of carbon fibers from linear low density polyethylene[J]. Carbon, 2015, 94: 524-530.
doi: 10.1016/j.carbon.2015.06.074 |
[9] |
RAJABPOUR S, MAO Q, GAO Z, et al. Low-tem-perature carboniazation of polyacrylonitrile/grapheme carbon fibers: a combined ReaxFF molecular dyn-amics and experimental study[J]. Carbon, 2020.DOI: 10.1016/j.carbon.2020.12038.
doi: 10.1016/j.carbon.2020.12038. |
[10] | FITZER E. Carbon fibres and their composites[M]. Berlin: Springer-Verlag, 1985:7-26. |
[11] |
JALILI R, ABOUTALEBI S H, ESRAFILZADEH D, et al. Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles[J]. Advanced Functional Materials, 2013, 23(43):5345-5354.
doi: 10.1002/adfm.201300765 |
[12] |
JAVAID A, SHAFFER MSP, BISMARCK A, et al. Carbon fibre-reinforced poly(ethylene glycol) diglycidylether based multifunctional structural supercapacitor composites for electrical energy storage applications[J]. Journal of Composite Materials, 2016, 50(16):2155-2163.
doi: 10.1177/0021998315602324 |
[13] |
KOWALEWSKI T, KIM E K, MCGANN J P, et al. Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer[J]. Journal of the American Chemical Society, 2012, 134(36):14846-14857.
doi: 10.1021/ja304352n |
[14] |
LONG C L, QI D P, WEI Tong, et al. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose[J]. Advanced Functional Materials, 2014, 24(25): 3953-3961.
doi: 10.1002/adfm.201304269 |
[15] |
SI W J, ZHOU J, ZHANG S M, et al. Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications[J]. Electrochimica Acta, 2013, 107:397-405.
doi: 10.1016/j.electacta.2013.06.065 |
[16] |
POULIN P, PENICAUD A, COULON C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science, 2000, 290(5495):1331-1334.
doi: 10.1126/science.290.5495.1331 |
[17] | RAZAL J M, COLEMAN J N, BAUGHMAN R H, et al. Arbitrarily shaped fiber assemblies from spun carbon nanotube gel fibers[J]. Advance Function Materials, 2007, 15(17):2918-2924. |
[18] |
DALTON A B, STEVE C, JOHN P F, et al. Super-tough carbon-nanotube fibres-These extraordinary composite fibres can be woven into electronic textiles[J]. Nature, 2003, 423(6941):703-706.
doi: 10.1038/423703a |
[19] |
ZHANG M, ATKINSON K R, BAUGHMAN R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology[J]. Science, 2004, 306:1358-1361.
doi: 10.1126/science.1104276 |
[20] | PENG H S. Fiber-shaped energy harvesting and storage devices[M]. Berlin Heidelberg: Springer, 2015:117-145. |
[21] |
ZHANG L, TIAN Y, SONG C X, et al. Study on preparation and performance of flexible all-solid-state supercapacitor based on nitrogen-doped RGO/CNT/MnO2 composite fibers[J]. Journal of Alloys and Compounds, 2021.DOI: 10.1016/j.jallcom.2020.157816.
doi: 10.1016/j.jallcom.2020.157816. |
[22] |
KIM J E, HAN T H, LEE S H, et al. Graphene oxide liquid crystals[J]. Angewandte Chemie International Edition, 2011, 50(13):3043-3047.
doi: 10.1002/anie.201004692 |
[23] |
XU Z, GAO C. Aqueous liquid crystals of graphene oxide[J]. ACS Nano, 2011, 5(4):2908.
doi: 10.1021/nn200069w |
[24] |
GAO C, ZHAO X L, SUN H Y, et al. Ultrastrong fibers assembled from giant graphene oxide sheets[J]. Advanced Materials, 2013, 25(2):188-193.
doi: 10.1002/adma.201203448 |
[25] |
XIN G Q, LIAN J, SUN H T, et al. Highly thermally conductive and mechanically strong graphene fibers[J]. Science, 2015, 349(6252):1083-1087.
doi: 10.1126/science.aaa6502 |
[26] |
GAO C, WANG M, XU P, et al. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering[J]. Advanced Materials, 2016, 28(30): 6449-6456.
doi: 10.1002/adma.201506426 |
[27] |
GAO C, XU Z, LI P G, et al. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores[J]. Acs Nano, 2012, 6(8):7103-7113.
doi: 10.1021/nn3021772 |
[28] |
ZHU M F, CHENG H M, LI F, et al. Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors[J]. Nano Energy, 2015, 15:642-653.
doi: 10.1016/j.nanoen.2015.05.004 |
[29] |
QU L T, DONG Z L, CHENG H H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012, 24(14):1856-1861.
doi: 10.1002/adma.201200170 |
[30] |
CHEN Y, YU D S, WANG H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nature Nanotechnology, 2014, 9(7):555-562.
doi: 10.1038/nnano.2014.93 |
[31] |
YE X K, ZHOU Q L, JIA C Y, et al. A knittable fibriform supercapacitor based on natural cotton thread coated with graphene and carbon nanoparticles[J]. Electrochimica Acta, 2016, 206:155-164.
doi: 10.1016/j.electacta.2016.04.100 |
[32] |
GAO Y H, MA W Z, TAO J Y, et al. Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage[J]. Advanced Materials, 2013, 25(35):4925-4931.
doi: 10.1002/adma.201301311 |
[33] | 王艺颖, 聂文琪, 丁辛. 石墨烯/聚吡咯/棉纱线电极的制备和性能研究[J]. 产业用纺织品, 2017, 35(5):20-26. |
WANG Y Y, NIE W Q, DING X, et al. Study on the preparation and performance of electrode made of rGo/PPy/cotton yarn[J]. Technical Textiles, 2017, 35(5):20-26. | |
[34] |
LIU L B, LI K, ZHENG Z J, et al. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes[J]. Nature Communications, 2015.DOI: 10.1038/ncomms8260.
doi: 10.1038/ncomms8260 |
[35] |
DU X, ZHAO W, MA Shuhui, et al. Effect of ZnCl2 impregnation concentration on the microstructure and electrical performance of ramie-based activated carbon hollow fiber[J]. Ionics, 2016, 22(4):545-553.
doi: 10.1007/s11581-015-1571-3 |
[36] |
PAN W, BA Y R, ZHOU S J, et al. Fabrication of polyaniline/copper sulfide/poly(ethylene terephthalate) thread electrode for flexible fiber-shaped supercapaci-tors[J]. Journal of Applied Polymer Science, 2018.DOI: 10.1002/app.46769.
doi: 10.1002/app.46769. |
[37] |
LI Y, LU C X, WANG J Z, et al. Superior supercapacitor electrode material from hydrazine hydrate modified porous polyacrylonitrile fiber[J]. Functional Materials Letters, 2016.DOI: 10.1142/S1793604716500326.
doi: 10.1142/S1793604716500326 |
[38] |
YADAV K, JASSAL M, AGRAWAL A K. Highly conducting silver nanowire-polyacrylonitrile hollow fibres for flexible supercapacitors[J]. International Journal of Energy Research, 2020, 44(2):1284-1293.
doi: 10.1002/er.4989 |
[39] |
ZHU M F, CHEN S H, MA W J, et al. Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors[J]. Journal of Power Sources, 2016, 319:271-280.
doi: 10.1016/j.jpowsour.2016.04.030 |
[40] |
LIU X H, MARLOW M N, SAMUEL J C, et al. Flexible all-fiber electrospun supercapacitor[J]. Journal of Power Sources, 2018, 384:264-269.
doi: 10.1016/j.jpowsour.2018.02.081 |
[1] | GUO Zijiao, LI Yue, ZHANG Rui, LU Zan. Preparation and properties of polyaniline/Ti3C2Tx/carbon nanotube composite fiber-based electrodes [J]. Journal of Textile Research, 2022, 43(02): 74-80. |
[2] | FANG Jian, REN Song, ZHANG Chuanxiong, CHEN Qian, XIA Guangbo, GE Can. Electroactive fibrous materials for intelligent wearable textiles [J]. Journal of Textile Research, 2021, 42(09): 1-9. |
[3] | JIANG Zhaohui, LI Yonggui, YANG Zitao, GUO Zengge, ZHANG Zhanqi, QI Yuanzhang, JIN Jian. Research progress in graphene/polymer composite fibers and textiles [J]. Journal of Textile Research, 2021, 42(03): 175-180. |