Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 200-206.doi: 10.13475/j.fzxb.20210407208

• Comprehensive Review • Previous Articles     Next Articles

Research progress in supercapacitors based on flexible textile fibers

NIE Wenqi1,2(), SUN Jiangdong1, XU Shuai1, ZHENG Xianhong1, XU Zhenzhen1   

  1. 1. School of Textiles and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2021-04-26 Revised:2022-04-08 Online:2022-07-15 Published:2022-07-29

Abstract:

In order to promote the application of fiber supercapacitors in the field of flexible energy storage, supercapacitors made from high performance fibers (i.e. carbon nanotube fiber, graphene fiber), natural fibers and man-made fibers were reviewed. The performance of supercapacitors using different types of fibers were analyzed and compared, and the advantages and disadvantages of various fiber supercapacitors were summarized. The results show that the structure, electron transfer resistor, and ion diffusion rate of high-performance fibers determine the specific energy and cycle life of the fibers supercapacitor. However, this type of fiber supercapacitor is limited by the mechanical properties of material, resulting in difficulties for subsequent weaving. Natural and man-made fibers used for making supercapacitors are easily processed with textile technologies, because the mechanical properties of the fibers meet the needs of the subsequent textile processing. The energy storage is affected by the effect of active material structure, density, and electron transfer. Finally, the research directions for flexible fiber supercapacitors are put forward, and difficult problems that need to be overcome in the future are analyzed and prospected.

Key words: fiber supercapacitor, flexible energy storage, energy density, carbon nanotube fiber, graphene fiber, wearable textiles

CLC Number: 

  • TM53

Tab.1

Electrochemical properties of different types of fiber supercharges"

纤维类型 制作工艺 电导率 能量密度 功率密度 比电容或比容量 参考文献
碳纳米管纤维 湿法纺丝 0.6 W·h/kg 5 F/g [18]
CVD法 8 S·cm2/g 379 W·h/kg 1 590 W/kg [19]
石墨烯纤维 水热法 102 S·cm2/g 6.3 mW·h/kg 1 085 mW/cm3 [30]
棉纤维 33 μW·h/cm2 0.67 mW/cm3 1.49 F/cm2 [32]
苎麻纤维 287 F/g [35]
PET纤维 14 S/cm 29 mF/cm2 [36]
PAN纤维 415 F/g [37]
PVA纤维 湿法纺丝 5.32 mW·h/g 26.9 mW/cm3 241 F/cm3 [39]
[1] RUCKDASHEL R R, VENKATARAMAN D P, JAY H. Smart textiles: a toolkit to fashion the future[J]. Journal of Applied Physics, 2021.DOI: 10.1063/5.0024006.
doi: 10.1063/5.0024006
[2] CHERENACK K, VAN P L. Smart textiles: challenges and opportunities[J]. Journal of Applied Physics, 2012.DOI: 10.1063/1.4742728.
doi: 10.1063/1.4742728
[3] SHIRSHOVA N, QIAN H, SHAFFER M S P, et al. Structural composite supercapacitors[J]. Composites Part A: Applied Science and Manufacturing, 2013, 46: 96-107.
doi: 10.1016/j.compositesa.2012.10.007
[4] GU X, CHAO L, FEI L, et al. A conductive interwoven bamboo carbon fiber membrane for Li-S batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9502-9509.
doi: 10.1039/C5TA00681C
[5] GUAN C, ZHAO W, HU Y, et al. High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes[J]. Advanced Energy Materials, 2016.DOI: 10.1002/aenm.201601034.
doi: 10.1002/aenm.201601034.
[6] MORETON R, WATT W. The spinning of polyacrylonitrile fibres in clean room conditions for the production of carbon fibres[J]. Carbon, 1974, 12(5): 543-554.
doi: 10.1016/0008-6223(74)90056-6
[7] SAWADA K, SAKAI S, TAYA M. Fabrication of ultrafine carbon fibers possessing a nanoporous structure from electrospun polyvinyl alcohol fibers containing silica nanoparticles[J]. Journal of Nanomaterials, 2014.DOI: 10.1155/2014/487943.
doi: 10.1155/2014/487943
[8] KIM J W, LEE J S. Preparation of carbon fibers from linear low density polyethylene[J]. Carbon, 2015, 94: 524-530.
doi: 10.1016/j.carbon.2015.06.074
[9] RAJABPOUR S, MAO Q, GAO Z, et al. Low-tem-perature carboniazation of polyacrylonitrile/grapheme carbon fibers: a combined ReaxFF molecular dyn-amics and experimental study[J]. Carbon, 2020.DOI: 10.1016/j.carbon.2020.12038.
doi: 10.1016/j.carbon.2020.12038.
[10] FITZER E. Carbon fibres and their composites[M]. Berlin: Springer-Verlag, 1985:7-26.
[11] JALILI R, ABOUTALEBI S H, ESRAFILZADEH D, et al. Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles[J]. Advanced Functional Materials, 2013, 23(43):5345-5354.
doi: 10.1002/adfm.201300765
[12] JAVAID A, SHAFFER MSP, BISMARCK A, et al. Carbon fibre-reinforced poly(ethylene glycol) diglycidylether based multifunctional structural supercapacitor composites for electrical energy storage applications[J]. Journal of Composite Materials, 2016, 50(16):2155-2163.
doi: 10.1177/0021998315602324
[13] KOWALEWSKI T, KIM E K, MCGANN J P, et al. Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer[J]. Journal of the American Chemical Society, 2012, 134(36):14846-14857.
doi: 10.1021/ja304352n
[14] LONG C L, QI D P, WEI Tong, et al. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose[J]. Advanced Functional Materials, 2014, 24(25): 3953-3961.
doi: 10.1002/adfm.201304269
[15] SI W J, ZHOU J, ZHANG S M, et al. Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications[J]. Electrochimica Acta, 2013, 107:397-405.
doi: 10.1016/j.electacta.2013.06.065
[16] POULIN P, PENICAUD A, COULON C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science, 2000, 290(5495):1331-1334.
doi: 10.1126/science.290.5495.1331
[17] RAZAL J M, COLEMAN J N, BAUGHMAN R H, et al. Arbitrarily shaped fiber assemblies from spun carbon nanotube gel fibers[J]. Advance Function Materials, 2007, 15(17):2918-2924.
[18] DALTON A B, STEVE C, JOHN P F, et al. Super-tough carbon-nanotube fibres-These extraordinary composite fibres can be woven into electronic textiles[J]. Nature, 2003, 423(6941):703-706.
doi: 10.1038/423703a
[19] ZHANG M, ATKINSON K R, BAUGHMAN R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology[J]. Science, 2004, 306:1358-1361.
doi: 10.1126/science.1104276
[20] PENG H S. Fiber-shaped energy harvesting and storage devices[M]. Berlin Heidelberg: Springer, 2015:117-145.
[21] ZHANG L, TIAN Y, SONG C X, et al. Study on preparation and performance of flexible all-solid-state supercapacitor based on nitrogen-doped RGO/CNT/MnO2 composite fibers[J]. Journal of Alloys and Compounds, 2021.DOI: 10.1016/j.jallcom.2020.157816.
doi: 10.1016/j.jallcom.2020.157816.
[22] KIM J E, HAN T H, LEE S H, et al. Graphene oxide liquid crystals[J]. Angewandte Chemie International Edition, 2011, 50(13):3043-3047.
doi: 10.1002/anie.201004692
[23] XU Z, GAO C. Aqueous liquid crystals of graphene oxide[J]. ACS Nano, 2011, 5(4):2908.
doi: 10.1021/nn200069w
[24] GAO C, ZHAO X L, SUN H Y, et al. Ultrastrong fibers assembled from giant graphene oxide sheets[J]. Advanced Materials, 2013, 25(2):188-193.
doi: 10.1002/adma.201203448
[25] XIN G Q, LIAN J, SUN H T, et al. Highly thermally conductive and mechanically strong graphene fibers[J]. Science, 2015, 349(6252):1083-1087.
doi: 10.1126/science.aaa6502
[26] GAO C, WANG M, XU P, et al. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering[J]. Advanced Materials, 2016, 28(30): 6449-6456.
doi: 10.1002/adma.201506426
[27] GAO C, XU Z, LI P G, et al. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores[J]. Acs Nano, 2012, 6(8):7103-7113.
doi: 10.1021/nn3021772
[28] ZHU M F, CHENG H M, LI F, et al. Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors[J]. Nano Energy, 2015, 15:642-653.
doi: 10.1016/j.nanoen.2015.05.004
[29] QU L T, DONG Z L, CHENG H H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012, 24(14):1856-1861.
doi: 10.1002/adma.201200170
[30] CHEN Y, YU D S, WANG H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nature Nanotechnology, 2014, 9(7):555-562.
doi: 10.1038/nnano.2014.93
[31] YE X K, ZHOU Q L, JIA C Y, et al. A knittable fibriform supercapacitor based on natural cotton thread coated with graphene and carbon nanoparticles[J]. Electrochimica Acta, 2016, 206:155-164.
doi: 10.1016/j.electacta.2016.04.100
[32] GAO Y H, MA W Z, TAO J Y, et al. Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage[J]. Advanced Materials, 2013, 25(35):4925-4931.
doi: 10.1002/adma.201301311
[33] 王艺颖, 聂文琪, 丁辛. 石墨烯/聚吡咯/棉纱线电极的制备和性能研究[J]. 产业用纺织品, 2017, 35(5):20-26.
WANG Y Y, NIE W Q, DING X, et al. Study on the preparation and performance of electrode made of rGo/PPy/cotton yarn[J]. Technical Textiles, 2017, 35(5):20-26.
[34] LIU L B, LI K, ZHENG Z J, et al. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes[J]. Nature Communications, 2015.DOI: 10.1038/ncomms8260.
doi: 10.1038/ncomms8260
[35] DU X, ZHAO W, MA Shuhui, et al. Effect of ZnCl2 impregnation concentration on the microstructure and electrical performance of ramie-based activated carbon hollow fiber[J]. Ionics, 2016, 22(4):545-553.
doi: 10.1007/s11581-015-1571-3
[36] PAN W, BA Y R, ZHOU S J, et al. Fabrication of polyaniline/copper sulfide/poly(ethylene terephthalate) thread electrode for flexible fiber-shaped supercapaci-tors[J]. Journal of Applied Polymer Science, 2018.DOI: 10.1002/app.46769.
doi: 10.1002/app.46769.
[37] LI Y, LU C X, WANG J Z, et al. Superior supercapacitor electrode material from hydrazine hydrate modified porous polyacrylonitrile fiber[J]. Functional Materials Letters, 2016.DOI: 10.1142/S1793604716500326.
doi: 10.1142/S1793604716500326
[38] YADAV K, JASSAL M, AGRAWAL A K. Highly conducting silver nanowire-polyacrylonitrile hollow fibres for flexible supercapacitors[J]. International Journal of Energy Research, 2020, 44(2):1284-1293.
doi: 10.1002/er.4989
[39] ZHU M F, CHEN S H, MA W J, et al. Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors[J]. Journal of Power Sources, 2016, 319:271-280.
doi: 10.1016/j.jpowsour.2016.04.030
[40] LIU X H, MARLOW M N, SAMUEL J C, et al. Flexible all-fiber electrospun supercapacitor[J]. Journal of Power Sources, 2018, 384:264-269.
doi: 10.1016/j.jpowsour.2018.02.081
[1] GUO Zijiao, LI Yue, ZHANG Rui, LU Zan. Preparation and properties of polyaniline/Ti3C2Tx/carbon nanotube composite fiber-based electrodes [J]. Journal of Textile Research, 2022, 43(02): 74-80.
[2] FANG Jian, REN Song, ZHANG Chuanxiong, CHEN Qian, XIA Guangbo, GE Can. Electroactive fibrous materials for intelligent wearable textiles [J]. Journal of Textile Research, 2021, 42(09): 1-9.
[3] JIANG Zhaohui, LI Yonggui, YANG Zitao, GUO Zengge, ZHANG Zhanqi, QI Yuanzhang, JIN Jian. Research progress in graphene/polymer composite fibers and textiles [J]. Journal of Textile Research, 2021, 42(03): 175-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .