Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (02): 171-175.doi: 10.13475/j.fzxb.20210407506

• Dyeing and Finshing & Chemicals • Previous Articles     Next Articles

Sulfanilamide finishing to polyamide 6 fabrics for flame retardant and anti-dripping performance

JIN Wenjie, CHENG Xianwei, GUAN Jinping(), CHEN Guoqiang   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk, Suzhou, Jiangsu 215021, China
  • Received:2021-04-28 Revised:2021-11-24 Online:2022-02-15 Published:2022-03-15
  • Contact: GUAN Jinping E-mail:guanjinping@suda.edu.cn

Abstract:

In order to further expand the application field of polyamide 6(PA6) fabric, sulfanilamide was used as flame retardant agent to finish polyamide 6 fabrics by impregnation deposition at high temperature. The thermal stability, heat release ability, melt dripping performance, flame retardant property and mechanism of the treated PA6 fabric were investigated. The results showed that the treated PA6 fabric had a high LOI value of 32.2%, and the damaged length and area were reduced without dripping phenomenon, suggesting that the treated PA6 fabric reached the B1 classification with good flame retardant performance. Meanwhile, the peak heat release rate of the treated PA6 fabric decreased by 16.9%, indicating significant decrease of fire hazard. It was suggested that sulfanilamide improved the flame retardancy of PA6 fabric mainly through the gas-phase mechanism. The flame retardant treatment exerted little influence on the tensile strength and handle of the treated PA6 fabric.

Key words: polyamide fabric, sulfanilamide, flame retardant modification, anti-dripping, gas-phase mechanism

CLC Number: 

  • TQ342.21

Fig.1

FT-IR spectra of PA6 fabrics"

Fig.2

Surface morphology images of PA6 fiber. (a) Untreated PA6 fabrics; (b) FR-PA6 fabrics"

Fig.3

TG curves of modified PA6 fabrics under air (a) and nitrogen (b)"

Tab.1

Combustion parameters of polyamide fabric"

试样 质量增
加率/%
LOI值/
%
损毁长
度/cm
熔滴
数量
是否点燃
脱脂棉
聚酰胺6 22.8 18.0 2~3
阻燃聚酰胺6 2.49 32.2 11.0 0

Fig.4

Photographs of PA6 fabrics after vertical burning test"

Fig.5

Heat release curve of PA6 fabrics"

Tab.2

Heat release parameters of PA6 fiber"

试样 HRC/
(J·g-1·k-1)
pHRR/
(W·g-1)
THR/
(kJ·g-1)
残炭
量/%
聚酰胺6 614 588.7 30.7 0
阻燃聚酰胺6 500 489.2 29.2 0

Fig.6

Surface morphology of char residue of PA6 fabric. (a) PA6 fabric; (b) Flame retardent of PA6 fabric"

Tab.3

Mechanical properties of PA6 fabrics"

样品 断裂强
力/N
断裂伸
长率/%
抗弯刚度/
(N·m-1)
聚酰胺6 1 573.3 35.1 31.7
阻燃聚酰胺6 1 434.4 31.8 40.7
[1] 赵岭. 锦纶短纤在职业装面料中应用趋势研究[J]. 中国纺织, 2019(5): 56-57.
ZHAO Ling. Research on the application trend of nylon staple fiber in professional clothing fabric[J]. China Textile, 2019(5): 56-57.
[2] 刘婷, 张安盈, 王锐, 等. 季戊四醇磷酸酯/二乙基次磷酸锌协同阻燃聚酰胺6的制备及其性能[J]. 纺织学报, 2018, 39(9): 8-14.
LIU Ting, ZHANG Anying, WANG Rui, et al. Preparation and performance of pentaerythritol phosphate/zinc diethyl phosphate synergistic flame retardant polyamide 6.[J]. Journal of Textile Research, 2018, 39(9): 8-14.
[3] 张爱英. 聚酰胺纤维织物的阻燃研究进展[J]. 化工进展, 2001, 20(4): 25-28.
ZHANG Aiying. Research progress on flame retardancy of polyamide fabric[J]. Progress in Chemical Industry, 2001, 20(4): 25-28.
[4] 施菊, 姜伟伟, 张红兵. 阻燃涂层胶FR-Ⅲ在尼龙织物上的应用[J]. 印染, 2006, 32(9): 31-32.
SHI Ju, JIANG Weiwei, ZHANG Hongbing. Application of FR - Ⅲ in nylon fabric[J]. China Dyeing & Finshing, 2006, 32(9): 31-32.
[5] 梁慕媛. 尼龙织物的活化改性及其阻燃整理[D]. 苏州: 苏州大学, 2019: 1-11.
LIANG Muyuan. Activation modification and flame retardant finishing of nylon fabric[D]. Suzhou: Soochow University, 2019: 1-11.
[6] 张旭, 李洁. 阻燃聚酰胺的研究进展和发展趋势[J]. 精细与专用化学品, 2017, 25(11): 10-13.
ZHANG Xu, LI Jie. Research progress and development trend of flame retardant polyamide[J]. Fine and Special Chemicals, 2017, 25(11): 10-13.
[7] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(3): 100-105.
DING Fang, REN Xuehong. Flame retardant finishing of polyester fabric by grafting phosphorus-nitrogen compounds[J]. Journal of Textile Research, 2020, 41(3): 100-105.
[8] 匡小慧. 基于多巴胺表面改性的蚕丝和聚酰胺织物阻燃整理[D]. 苏州:苏州大学, 2018: 67-78.
KUANG Xiaohui. Flame retardant finishing of silk and nylon fabrics based on dopamine surface modifica-tion[D]. Suzhou:Soochow University, 2018: 67-78.
[9] 孙军, 陈宸, 谷晓昱, 等. 尼龙66织物的不熔融阻燃整理[J]. 印染, 2015, 41(17): 6-10,15.
SUN Jun, CHEN Chen, GU Xiaoyu, et al. Non melting flame retardant finishing of nylon 66 fabric[J]. China Dyeing & Finishing, 2015, 41(17): 6-10,15.
[10] 崔永岩. 硫酸铵在ABS中的阻燃应用研究[J]. 中国塑料, 2000, 14(6): 65-68.
CUI Yongyan. Study on flame retardant application of ammonium sulfate in ABS[J]. China Plastics, 2000, 14(6): 65-68.
[11] 沈晓茹, 庞然, 刘国坤, 等. 对氨基苯磺酰胺在银表面的吸附和SERS光谱的理论研究[J]. 光散射学报, 2020, 32(2): 121-124.
SHEN Xiaoru, PANG Ran, LIU Guokun, et al. Theoretical study on adsorption and SERS spectra of p-aminobenzene sulfonamide on silver surface[J]. Acta Light Scattering Sinica, 2020, 32(2): 121-124.
[12] 赵乘寿, 杨觅, 赵春霞, 等. P-N新型阻燃剂对聚酯的阻燃作用研究[C]//2006全国阻燃学术年会论文集.北京:中国阻燃协会, 2006: 3.
ZHAO Chengshou, YANG Mi, ZHAO Chunxia, et al. Study on flame retardant effect of p-n new flame retardant on polyester[C]//Proceedings of 2006 National Flame Retardant Academic Annual Conference. Beijing: China Flame Retardant Association, 2006: 3.
[13] LIU K, LI Y Y, TAO L, et al. Synjournal and characterization of inherently flame retardant polyamide 6 based on a phosphine oxide derivative[J]. Polymer Degradation and Stability, 2019, 163:151-160.
doi: 10.1016/j.polymdegradstab.2019.03.004
[14] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(7): 11-18.
LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant polyamide 6 fiber by phosphorus heterophenanthrene copolymeriza-tion[J]. Journal of Textile Research, 2021, 42(7): 11-18.
[15] 王敬尊, 王霆. 如何解释红外谱图[J]. 大学化学, 2016, 31(6): 90-97.
WANG Jingzun, WANG Ting. How to interpret infrared spectra[J]. University Chemistry, 2016, 31(6): 90-97.
[16] RASMUSSEN C L, GLARBORG P, MARSHALL P. Mechanisms of radical removal by SO2[J]. Proceedings of the Combustion Institute, 2007, 31(1): 339-347.
doi: 10.1016/j.proci.2006.07.249
[17] JIN W J, CHENG X W, HE W L, et al. Flame retardant and anti-dripping modification of polyamide 6 fabric by guanidine sulfamate with enhanced durability[J]. Thermochimica Acta, 2021, 706, 179073.
doi: 10.1016/j.tca.2021.179073
[1] XU Yingjun, WANG Fang, NI Yanpeng, CHEN Lin, SONG Fei, WANG Yuzhong. Research progress on flame-retardation and multi-functionalization of textiles [J]. Journal of Textile Research, 2022, 43(02): 1-9.
[2] FANG Yinchun, SUN Weihao. Research progress in flame retardant cellulose aerogel [J]. Journal of Textile Research, 2022, 43(01): 43-48.
[3] LI Chang, FANG Kuanjun, LIU Xiuming, AN Fangfang, LIANG Yingchao, LIU Hao. Effect of cationic modification in hydrophobic system on ink droplet spreading on cotton/polyamide fabrics [J]. Journal of Textile Research, 2021, 42(09): 112-119.
[4] SUN Chenying, WANG Wenqing, JIN Gaoling, WANG Rui. Research advances in thermoplastic polymers for flame retardant and anti-dripping behavior [J]. Journal of Textile Research, 2021, 42(06): 171-179.
[5] REN Yuanlin, JIANG Li'na, HUO Tongguo, TIAN Tian. Research progress on flame retardant modification of polyacrylonitrile fiber [J]. Journal of Textile Research, 2019, 40(08): 181-188.
[6] . Effect of combined anti-dripping additive on properties of flame resistant polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 15-21.
[7] ZHU Shi-Feng, SHI Mei-Wu. Current status and developing trend of research on anti-dripping of thermoplastic fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(6): 121-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LUO Xiaolei, LIU Lin, YAO Juming. Preparation and study of pure biomass cellulose aerogels for flame retardancy[J]. Journal of Textile Research, 2022, 43(01): 1 -8 .
[2] LI Longlong, WEI Peng, WU Cuixia, YAN Jinfei, LOU Hejuan, ZHANG Yifeng, XIA Yumin, WANG Yanping, WANG Yimin. Synthesis and properties of bio-based liquid crystal copolyester fiber based on p-hydroxyphenyl propionic acid[J]. Journal of Textile Research, 2022, 43(01): 9 -14 .
[3] . [J]. Journal of Textile Research, 2022, 43(01): 217 .
[4] . [J]. Journal of Textile Research, 2022, 43(01): 218 .
[5] . [J]. Journal of Textile Research, 2021, 42(11): 207 .
[6] WEI Na'na, LIU Die, MA Zheng, JIAO Chenlu. Adsorption performance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method[J]. Journal of Textile Research, 2022, 43(02): 53 -60 .
[7] WANG Rui, LIU Yanlin, LIU Yunyu, GU Weiwen, LIU Ziling, WEI Jianfei. Preparation and application of carbon dots with polyethylene terephthalate as precursor[J]. Journal of Textile Research, 2022, 43(02): 10 -18 .
[8] SHI Sheng, WANG Yan, LI Fei, TANG Jiandong, GAO Xiangyu, HOU Wensheng, GUO Hong, WANG Shuhua, JI Jiaqi. Efficient separation of polyester and cotton from waste blended fabrics with dilute oxalic acid solution[J]. Journal of Textile Research, 2022, 43(02): 140 -148 .
[9] CHEN Yong, WU Jing, WANG Chaosheng, PAN Xiaohu, LI Naixiang, DAI Junming, WANG Huaping. Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-co-terephthalate) fiber[J]. Journal of Textile Research, 2022, 43(02): 37 -43 .
[10] DONG Han, ZHENG Sensen, GUO Tao, DONG Jie, ZHAO Xin, WANG Shihua, ZHANG Qinghua. Preparation and properties of high heat-resistant polyimide fiber[J]. Journal of Textile Research, 2022, 43(02): 19 -23 .