Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (04): 33-39.doi: 10.13475/j.fzxb.20210500107
• Fiber Materials • Previous Articles Next Articles
YE Wei1,2, YU Jin1,2, LONG Xiaoyun1,2(), SUN Qilong1,2, MA Yan1,2
CLC Number:
[1] |
CHEN W, LI S, CHEN C, et al. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel[J]. Advanced Materials, 2011, 23(47): 5679-5683.
doi: 10.1002/adma.201102838 |
[2] |
BAO C, SONG L, XING W, et al. Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending[J]. Journal of Materials Chemistry, 2012, 22(13): 6088-6096.
doi: 10.1039/c2jm16203b |
[3] |
BAI X, ZHAI Y, ZHANG Y. Green approach to prepare graphene-based composites with high microwave absorption capacity[J]. Journal of Physical Chemistry C, 2011, 115(23): 11673-11677.
doi: 10.1021/jp202475m |
[4] | PENG F, MENG F, GUO Y, et al. Intercalating hybrids of sandwich-like Fe3O4-graphite: synthesis and their synergistic enhancement of microwave absorption[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16744-16753. |
[5] |
PRASAD J, SINGH A K, TOMAR M, et al. Strong electromagnetic wave absorption and microwave shielding in the Ni-Cu@MoS2/rGO composite[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(20): 18666-18677.
doi: 10.1007/s10854-019-02219-7 |
[6] |
HE P, HOU Z L, ZHANG K L, et al. Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption[J]. Journal of Materials Science, 2017, 52: 8258-8267.
doi: 10.1007/s10853-017-1041-6 |
[7] | WAN Y, JIAN X, LI C, et al. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies[J]. Journal of Magnetism & Magnetic Materials, 2016, 399(1): 252-259. |
[8] |
CHEN C, XI J, YIN H, et al. Ultralight graphene micro-popcorns for multifunctional composite applications[J]. Carbon, 2018, 139: 545-555.
doi: 10.1016/j.carbon.2018.07.020 |
[9] |
YAN C, CAO J, LV H, et al. In situ regulating aspect ratio of bamboo-like CNTs via CoxNi1-x-catalyzed growth to pursue superior microwave attenuation in X-band[J]. Inorganic Chemistry Frontiers, 2019, 6(1): 309-316.
doi: 10.1039/C8QI01102H |
[10] |
TONG G, LIU F, WU W, et al. Rambutan-like Ni/MWCNT heterostructures: easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics[J]. Journal of Materials Chemistry A, 2014, 2(20): 7373-7382.
doi: 10.1039/c4ta00117f |
[11] |
NAZIR A, YU H, WANG L, et al. Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding[J]. Journal of Materials Science, 2018, 53: 8699-8719.
doi: 10.1007/s10853-018-2122-x |
[12] | LUO Chunjia, TANG Yusheng, JIAO Tian. High-temperature stable and metal-free electromagnetic wave-absorbing SiBCN ceramics derived from carbon-rich hyperbranched polyborosilazanes[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 28051-28061. |
[13] | YAN X, JI T, YE W. Surface modification of activated carbon fibers with Fe3O4 for enhancing their electromagnetic wave absorption property[J]. Journal of Nanomaterials, 2020(1): 1-14. |
[14] |
QIU J, QIU T. Fabrication and microwave absorption properties of magnetite nanoparticle-carbon nanotube-hollow carbon fiber composites[J]. Carbon, 2015, 81: 20-28.
doi: 10.1016/j.carbon.2014.09.011 |
[15] |
SHAO Y, LU W, CHEN H, et al. Flexible ultra-thin Fe3O4/MnO2 core-shell decorated CNT composite with enhanced electromagnetic wave absorption perfor-mance[J]. Composites Part B: Engineering, 2018, 144: 111-117.
doi: 10.1016/j.compositesb.2018.02.015 |
[16] | YAN L, HONG C, SUN B, et al. In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6320-6331. |
[17] |
ZHOU Z P, LAI C L, ZHANG L F, et al. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties[J]. Polymer, 2009, 50 (13): 2999-3006.
doi: 10.1016/j.polymer.2009.04.058 |
[18] |
YCA B, QSA B, LEI S, et al. Effect of preparation conditions on structure and electromagnetic wave absorption properties of sandwich-like Fe3O4-rGO nanocomposites-science direct[J]. Journal of Magnetism and Magnetic Materials, 2020, 503: 166656.
doi: 10.1016/j.jmmm.2020.166656 |
[19] |
ZHANG X, ZHU W, ZHANG W, et al. Preparation of TiO2/Fe3O4/CF composites for enhanced microwave absorbing performance[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(9): 7194-7202.
doi: 10.1007/s10854-018-8707-y |
[20] |
LO C K, XIAO D, CHOI M. Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation[J]. Journal of Materials Chemistry, 2007, 17(23): 2418-2427.
doi: 10.1039/b617500g |
[21] |
HO C H, TSAI C P, CHUNG C C, et al. Shape-controlled growth and shape-dependent cation site occupancy of monodisperse Fe3O4 nanoparticles[J]. Chemistry of Materials, 2011, 23(7): 1753-1760.
doi: 10.1021/cm102758u |
[22] |
TURU Y, PETER H. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254: 2441-2449.
doi: 10.1016/j.apsusc.2007.09.063 |
[23] |
RITTER M, WEISS W. Fe3O4(III) surface structure determined by LEED crystallography[J]. Surface Science, 1999, 432(1/2): 81-94.
doi: 10.1016/S0039-6028(99)00518-X |
[24] |
XIANG J, LI J, ZHANG X, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. Journal of Materials Chemistry A, 2014, 2(40): 16905-16914.
doi: 10.1039/C4TA03732D |
[25] | 叶伟, 孙雷, 余进, 等. 磁性颗粒/碳纤维轻质柔软复合材料制备及其吸波性能[J]. 纺织学报, 2019, 40(1): 97-102. |
YE Wei, SUN Lei, YU Jin, et al. Preparation and microwave absorption property of flexible lightweight magnetic particles-carbon fiber composites[J]. Journal of Textile Research, 2019, 40 (1): 97-102. | |
[26] | HAN Z, LI D, WANG H, et al. Broadband electromagnetic-wave absorption by FeCo/C nanocapsules[J]. Applied Physics Letters, 2009, 95(2): 1-3. |
[1] | LÜ Lihua, LI Zhen, ZHANG Duoduo. Preparation and properties of sound absorbing composites based on use of waste straw/polycaprolactone [J]. Journal of Textile Research, 2022, 43(01): 28-35. |
[2] | LI Bo, FAN Wei, GAO Xingzhong, WANG Shujuan, LI Zhihu. Carbon fiber reinforced epoxy based vitrimer composite material closed-loop recycling [J]. Journal of Textile Research, 2022, 43(01): 15-20. |
[3] | CHEN Hainiao, TIAN Wei, JIN Xiaoke, ZHANG Hongxia, LI Yanqing, ZHU Chengyan. Analysis on cross-sectional structure of moso bamboo using three-dimensional microscope imaging [J]. Journal of Textile Research, 2021, 42(12): 49-54. |
[4] | WEI Xiaoling, LI Ruixue, QIN Zhuo, HU Xinrong, LIN Fusheng, LIU Lingshan, GONG Xiaozhou. Key technologies for formation of warp T-shape preforms [J]. Journal of Textile Research, 2021, 42(11): 51-55. |
[5] | REN Libing, CHEN Li, JIAO Wei. Microstructure characterization of multi-layer interlocked woven preforms based on quadratic functions [J]. Journal of Textile Research, 2021, 42(08): 76-83. |
[6] | ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191. |
[7] | QIAO Cancan, JIANG Yaming, QI Yexiong, LIN Wenni, ZHANG Ye. Characterization of shock wave propagation in ceramic reinforced weft-knitted biaxial multilayer yarnlining fabric and woven fabrics composites [J]. Journal of Textile Research, 2021, 42(05): 84-89. |
[8] | SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77. |
[9] | LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189. |
[10] | LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173. |
[11] | LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173. |
[12] | CHEN Lifu, YU Weidong. Stab resistance of composites with synthetic diamond filled polyimide resin matrix [J]. Journal of Textile Research, 2020, 41(05): 38-44. |
[13] | LI Peng, WAN Zhenkai, JIA Minrui. Damage monitoring of composite materials based on twist energy of carbon nanotube yarns [J]. Journal of Textile Research, 2020, 41(04): 58-63. |
[14] | ZHANG Hengyu, ZHANG Xiansheng, XIAO Hong, SHI Meiwu. Research progress of two-dimensional carbide in field of flexible electromagnetic absorbing [J]. Journal of Textile Research, 2020, 41(03): 182-187. |
[15] | LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling. Preparation and electrochemical properties of MnO2/graphene/cotton fabric composite electrode [J]. Journal of Textile Research, 2020, 41(01): 96-101. |
|