Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (12): 181-189.doi: 10.13475/j.fzxb.20210501210

• Comprehensive Review • Previous Articles     Next Articles

Research progress in aerogel materials application for textiles

ZHAO Lunyu1,2, SUI Xiaofeng1,2, MAO Zhiping1,2, LI Weidong3, FENG Xueling1,2()   

  1. 1. College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    3. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2021-05-07 Revised:2021-11-29 Online:2022-12-15 Published:2023-01-06
  • Contact: FENG Xueling E-mail:xlfeng@dhu.edu.cn

Abstract:

In order to clarify the definition of aerogel and explore its application value in textiles, the evolution of the definition and the domestic and international research status of aerogel-based textiles were reviewed and summarized. The preparation processes of three main application methods of aerogel in textiles, i.e., gel integral molding method, thermal bonding method and coating method, as well as their advantages and disadvantages were analyzed in detail. Focusing on the four application forms of aerogel-based textiles, including thermal protection textiles, warm and cold-proof textiles, super-hydrophobic textiles and noise and sound insulation textiles, this paper expounded the action mechanism of aerogel and pointed out the problems currently in these application forms. Finally, the review concluded that enhancing mechanical properties, optimizing material compatibility, reducing preparation cost and promoting intelligent transformation would be the significant development directions of aerogel materials for the textile field in the future.

Key words: aerogel, preparation method, functional textile, thermal protection textile, cold-proof textile, super hydrophobic, acoustic insulation

CLC Number: 

  • TS941.73

Fig.1

Aerogel materials. (a) Fiber reinforced aerogel insulation felt; (b) Particulate aerogels; (c) Transparent aerogels"

Fig.2

Schematic diagram of integral molding method"

Fig.3

Schematic diagram of thermal bonding method"

Fig.4

Schematic diagram of coating method"

[1] DU A, ZHOU B, ZHANG Z, et al. A special material or a new state of matter: a review and reconsideration of the aerogel[J]. Materials, 2013, 6(3): 941-968.
doi: 10.3390/ma6030941 pmid: 28809350
[2] KISTLER S S. Coherent expanded-aerogels[J]. The Journal of Physical Chemistry, 1932, 36(1): 52-64.
doi: 10.1021/j150331a003
[3] KISTLER S S. Method of producing aerogels:US2093454A[P]. 1937-09-21.
[4] HÜSING N, SCHUBERT U. Aerogels: airy materials: chemistry, structure, and properties[J]. Angewandte Chemie International Edition, 1998, 37(1/2): 22-45.
doi: 10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
[5] 施瓦特福格 F, 鲍姆勒 U. 在水不溶性甲硅烷基化剂中基本上呈球形液凝胶的生产方法: 99802075.3[P]. 2001-03-21.
SHIWATEFUGE F, BAOMULE U. Method of producing substantially spherical lyogels in water insoluble silylating agents: 99802075.3[P]. 2001-03-21.
[6] ALEMÁN J, CHADWICK A V, HE J, et al. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007)[J]. Pure and Applied Chemistry, 2007, 79(10): 1801-1829.
doi: 10.1351/pac200779101801
[7] AEGERTER M A, LEVENTIS N, KOEBEL M M. Aerogels handbook[M]. New York: Springer, 2011: 3.
[8] ALIEV A E, OH J, KOZLOV M E, et al. Giant-stroke, superelastic carbon nanotube aerogel muscles[J]. Science, 2009, 323(5921): 1575-1578.
doi: 10.1126/science.1168312 pmid: 19299612
[9] JIN H, NISHIYAMA Y, WADA M, et al. Nanofibrillar cellulose aerogels[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 240(1): 63-67.
doi: 10.1016/j.colsurfa.2004.03.007
[10] ZIEGLER C, WOLF A, LIU W, et al. Modern inorganic aerogels[J]. Angewandte Chemie International Edition, 2017, 56(43): 13200-13221.
doi: 10.1002/anie.201611552
[11] 孔勇, 沈晓冬, 崔升. 气凝胶纳米材料[J]. 中国材料进展, 2016, 35(8): 569-576.
KONG Yong, SHEN Xiaodong, CUI Sheng. Nano materials of aerogels[J]. Materials China, 2016, 35(8): 569-576.
[12] 魏鹏湾, 闫共芹, 赵冠林, 等. 二氧化硅气凝胶复合隔热材料研究进展[J]. 无机盐工业, 2016, 48(10): 1-6.
WEI Pengwan, YAN Gongqin, ZHAO Guanlin, et al. Research progress of silica aerogel composites for thermal insulation[J]. Inorganic Chemicals Industry, 2016, 48(10): 1-6.
[13] 梁腾隆, 赵晓明. SiO2气凝胶绝热复合材料的研究现状[J]. 成都纺织高等专科学校学报, 2017, 34(2): 238-243.
LIANG Tenglong, ZHAO Xiaoming. Research status of SiO2 aerogel composite with thermal insulation[J]. Journal of Chengdu Textile College, 2017, 34(2): 238-243.
[14] 赵国樑, 李光武, 薛蓉, 等. 气凝胶在纺织服装领域的应用技术现状[J]. 新材料产业, 2021(2): 48-53.
ZHAO Guoliang, LI Guangwu, XUE Rong, et al. Present situation of application technology of aerogel in textile and garment field[J]. Advanced Materials Industry, 2021(2): 48-53.
[15] OH K W, KIM D K, KIM S H. Ultra-porous flexible PET/aerogel blanket for sound absorption and thermal insulation[J]. Fibers and Polymers, 2009, 10(5): 731-737.
doi: 10.1007/s12221-010-0731-3
[16] LI Z, GONG L L, CHENG X D, et al. Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior[J]. Materials & Design, 2016, 99: 349-355.
[17] XU L, JIANG Y, FENG J, et al. Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations[J]. Ceramics International, 2015, 41(1): 437-442.
doi: 10.1016/j.ceramint.2014.08.088
[18] 罗佳妮, 吴瑾, 王浣雨, 等. PP/SiO2和PET/SiO2复合气凝胶的制备及性能研究[J]. 产业用纺织品, 2021, 39(2): 41-47,58.
LUO Jiani, WU Jin, WANG Huanyu, et al. Study on preparation and properties of PP/SiO2 and PET/SiO2 composite aerogels[J]. Technical Textiles, 2021, 39(2): 41-47,58.
[19] 吴会军, 梁雄龙, 陈奇良, 等. 整体成型法制备气凝胶隔热保温复合材料[J]. 广州大学学报(自然科学版), 2015, 14(6): 36-40.
WU Huijun, LIANG Xionglong, CHEN Qiliang, et al. Preparation of aerogel composites by monolithic forming method for thermal insulation[J]. Journal of Guangzhou University (Natural Science Edition), 2015, 14(6): 36-40.
[20] 岳晓华. 一种复合SiO2气凝胶隔热毡垫及其制备方法:201410091609.4[P]. 2014-07-16.
YUE Xiaohua. A composite SiO2 aerogel insulation felt and its preparation method: 201410091609.4[P]. 2014-07-16.
[21] XIONG X, YANG T, MISHRA R, et al. Transport properties of aerogel-based nanofibrous nonwoven fabrics[J]. Fibers and Polymers, 2016, 17(10): 1709-1714.
doi: 10.1007/s12221-016-6745-8
[22] BHUIYAN M A R, WANG L, SHAID A, et al. Silica aerogel-integrated nonwoven protective fabrics for chemical and thermal protection and thermophysiological wear comfort[J]. Journal of Materials Science, 2020, 55(6): 2405-2418.
doi: 10.1007/s10853-019-04203-2
[23] 贺香梅. SiO2气凝胶的常压干燥制备及在隔热纺织品中的应用[D]. 上海: 东华大学, 2014: 31-35.
HE Xiangmei. The synthesis of silica aerogel via atmospheric pressure drying and its application in thermal insulation textiles[D]. Shanghai: Donghua University, 2014: 31-35.
[24] 张明明, 刘晓林, 马天, 等. SiO2气凝胶制备及其在织物保温涂层中的应用[J]. 稀有金属材料与工程, 2015, 44(S1): 421-425.
ZHANG Mingming, LIU Xiaolin, MA Tian, et al. Preparation of silica aerogels and application in thermal insulation coating of fabric[J]. Rare Metal Materials and Engineering, 2015, 44(S1): 421-425.
[25] JABBARI M, ÅKESSON D, SKRIFVARS M, et al. Novel lightweight and highly thermally insulative silica aerogel-doped poly (vinyl chloride)-coated fabric composite[J]. Journal of Reinforced Plastics and Composites, 2015, 34(19): 1581-1592.
doi: 10.1177/0731684415578306
[26] BHUIYAN M R, WANG L, SHAID A, et al. Polyurethane-aerogel incorporated coating on cotton fabric for chemical protection[J]. Progress in Organic Coatings, 2019, 131:100-110.
doi: 10.1016/j.porgcoat.2019.01.041
[27] 何飞, 赫晓东, 李垚. 气凝胶热特性的研究现状[J]. 材料导报, 2005, 12: 20-22.
HE Fei, HE Xiaodong, LI Yao. Study on thermal properties of aerogels[J]. Materials Reports, 2005, 12: 20-22.
[28] 何飞. SiO2和 SiO2-Al2O3复合干凝胶超级隔热材料的制备与表征[D]. 哈尔滨: 哈尔滨工业大学, 2006:128-129.
HE Fei. Synthesis and characterization of SiO2 and SiO2-Al2O3 xerogels super insulation materials[D]. Harbin: Harbin Institute of Technology, 2006:128-129.
[29] 张兴娟, 吴洪飞, 孔祥明. 新型组合式消防服热防护性能分析[J]. 中国个体防护装备, 2013 (6): 20-24.
ZHANG Xingjuan, WU Hongfei, KONG Xiangming. Analysis of thermal protective performance of aerogel-based new combined firefighters' clothing[J]. China Personal Protective Equipment, 2013(6): 20-24.
[30] UDAYRAJ, TALUKDAR P, DAS A, et al. Heat and mass transfer through thermal protective clothing:a review[J]. International Journal of Thermal Sciences, 2016, 106: 32-56.
doi: 10.1016/j.ijthermalsci.2016.03.006
[31] JIN L, HONG K, YOON K. Effect of aerogel on thermal protective performance of firefighter clothing[J]. Journal of Fiber Bioengineering and Informatics, 2013, 6(3): 315-324.
doi: 10.3993/jfbi09201309
[32] QI Z, HUANG D, HE S, et al. Thermal protective performance of aerogel embedded firefighter's protective clothing[J]. Journal of Engineered Fibers and Fabrics, 2013, 8(2): 134-139.
[33] 高珊, 卢业虎, 张德锁, 等. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(4): 117-122.
GAO Shan, LU Yehu, ZHANG Desuo, et al. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel[J]. Journal of Textile Research, 2020, 41(4): 117-122.
[34] SHAID A, FERGUSSON M, WANG L. Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter's protective clothing[J]. Chemical and Materials Engineering, 2014, 2(2): 37-43.
doi: 10.13189/cme.2014.020203
[35] SHAID A, WANG L, PADHYE R, et al. Aerogel nonwoven as reinforcement and batting material for firefighter's protective clothing: a comparative study[J]. Journal of Sol-Gel Science and Technology, 2018, 87(1): 95-104.
doi: 10.1007/s10971-018-4689-8
[36] SHAID A, WANG L, PADHYE R. The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment[J]. Journal of Industrial Textiles, 2016, 45(4): 611-625.
doi: 10.1177/1528083715610296
[37] ZHANG H, SONG G, SU H, et al. An exploration of enhancing thermal protective clothing performance by incorporating aerogel and phase change materials[J]. Fire and Materials, 2017, 41(8): 953-963.
doi: 10.1002/fam.2435
[38] 张慧. 基于气凝胶的高性能热防护纺织新材料的研究[D]. 天津: 天津工业大学, 2017: 27-46.
ZHANG Hui. Research on high performance thermal protection textile materials based on aerogel[D]. Tianjin:Tiangong University, 2017: 27-46.
[39] 王昕, 黄胶, 郑振荣. TiO2/SiO2气凝胶隔热涂层帐篷材料的制备[J]. 印染, 2020, 46(1): 52-55,59.
WANG Xin, HANG Jiao, ZHENG Zhenrong. Preparation of TiO2/SiO2 aerogel thermal insulation coating tent material[J]. China Dyeing & Finishing, 2020, 46(1): 52-55,59.
[40] 崔海云, 何婷婷. 气凝胶在服饰鞋被纺织品中的应用[J]. 新材料产业, 2021(2): 54-56.
CUI Haiyun, HE Tingting. Application of aerogel in clothing and footwear textiles[J]. Advanced Materials Industry, 2021(2): 54-56.
[41] TREVINO L A, ORNDOFF E S, TANG H H, et al. Aerogel-based insulation for advanced space suit[J]. SAE Technical Paper, 2002.DOI:10.4271/2002-01-2316.
doi: 10.4271/2002-01-2316
[42] TANG H H, ORNDOFF E S, TREVINO L A. Thermal performance of space suit elements with aerogel insulation for moon and mars exploration[J]. SAE Technical Paper, 2006. DOI:10.4271/2006-01-2235.
doi: 10.4271/2006-01-2235
[43] 刘茜, 吴磊. 固体空气: 气凝胶在服装和建筑中的应用[J]. 国外纺织技术, 2004, 5: 13-16.
LIU Qian, WU Lei. Application of solid air: aerogel in clothing and architecture[J]. Textile Technology Overseas, 2004, 5: 13-16.
[44] 高珊, 卢业虎, 王来力, 等. 气凝胶在防护服中的应用进展[J]. 丝绸, 2019, 56(4): 44-49.
GAO Shan, LU Yehu, WANG Laili, et al. Application progress of aerogel in protective clothing[J]. Journal of Silk, 2019, 56(4): 44-49.
[45] 赵石楠. 气凝胶型隔热层消防服概念及应用的可行性研究[J]. 消防技术与产品信息, 2018, 31(1): 67-69.
ZHAO Shinan. Conception and application feasibility of aerogel thermal insulating fire protective clothing[J]. Fire Technique and Products Information, 2018, 31(1): 67-69.
[46] 严杰, 赵林, 张雪. 一种气凝胶保暖服装: 201821691075.9[P]. 2019-08-30.
YAN Jie, ZHAO Lin, ZHANG Xue. An aerogel thermal clothing: 201821691075.9[P]. 2019-08-30.
[47] 苏文桢, 卢业虎. 气凝胶防寒服的研制与性能评价[J]. 丝绸, 2020, 57(9): 58-62.
SU Wenzhen, LU Yehu. Development and performance evaluation of aerogel-based cold protective clothing[J]. Journal of Silk, 2020, 57(9): 58-62.
[48] 曹明贵, 彭兵. 一种二氧化硅气凝胶衣服: 201821294696.3[P]. 2019-03-15.
CAO Minggui, PENG Bing. A silica aerogel garment: 201821294696.3[P]. 2019-03-15.
[49] SHI S, HAN Y, HU J. Robust waterproof and self-adaptive breathable membrane with heat retention property for intelligent protective cloth[J]. Progress in Organic Coatings, 2019. DOI:10.1016/j.porgcoat.2019.105303.
doi: 10.1016/j.porgcoat.2019.105303
[50] 韩健健, 胡勇杰, 刘谷. 服装用气凝胶材料的贴合结构设计[J]. 染整技术, 2021, 43(6): 34-37.
HAN Jianjian, HU Yongjie, LIU Gu. Fitting structure design of aerogel material for clothing[J]. Textile Dyeing and Finishing Journal, 2021, 43(6): 34-37.
[51] 张旋宇. 基于多孔材料制备超疏水防紫外多功能纺织品[D]. 上海: 东华大学, 2017:48-68.
ZHANG Xuanyu. Preparation of super-hydrophobic and UV-blocking multifunctional textiles based on porous materials[D]. Shanghai: Donghua University, 2017:48-68.
[52] 盛宇, 徐丽慧, 孟云, 等. 用SiO2/TiO2复合气凝胶制备超疏水光催化防紫外线织物[J]. 纺织学报, 2019, 40(7): 90-96.
SHENG Yu, XU Lihui, MENG Yun, et al. Preparation of superhydrophobic,photocatalytic and UV-blocking textiles based on SiO2/TiO2 composite aerogels[J]. Journal of Textile Research, 2019, 40(7): 90-96.
[53] LANG X H, ZHU T Y, ZOU L, et al. Fabrication and characterization of polypropylene aerogel material and aerogel coated hybrid materials for oil-water separation applications[J]. Progress in Organic Coatings, 2019. DOI:10.1016/j.porgcoat.2019.105370.
doi: 10.1016/j.porgcoat.2019.105370
[54] 靳懿, 徐丽慧, 曲珍, 等. 氟硅烷改性 CuS/SiO2 复合气凝胶的超双疏防紫外线纺织品[J]. 印染, 2020, 46(2): 1-6.
JIN Yi, XU Lihui, QU Zhen, et al. Preparation of superamphiphobic and anti-UV fabrics based on the CuS/SiO2 aerogel modified by fluorosilane[J]. China Dying & Finishing, 2020, 46(2): 1-6.
[55] 丁娇娥. 基于 SiO2气凝胶的自清洁材料的制备和表征[D]. 上海: 东华大学, 2015:17-29.
DING Jiaoe. Preparation and characterization of self-cleaning materials based on SiO2 aerogel[D]. Shanghai: Donghua University: 2015, 17-29.
[56] YANG T, XIONG X, VENKATARAMAN M, et al. Investi-gation on sound absorption properties of aerogel/polymer nonwovens[J]. Journal of The Textile Institute, 2019, 110(2): 196-201.
doi: 10.1080/00405000.2018.1472540
[57] RAMAMOORTHY M, PISAL A A, RENGASAMY R S, et al. In-situ synthesis of silica aerogel in polyethylene terephthalate fibre nonwovens and their composite properties on acoustical absorption behavior[J]. Journal of Porous Materials, 2018, 25(1): 179-187.
doi: 10.1007/s10934-017-0431-0
[58] TALEBI Z, SOLTANI P, HABIBI N, et al. Silica aerogel/polyester blankets for efficient sound absorption in buildings[J]. Construction and Building Materials, 2019, 220:76-89.
doi: 10.1016/j.conbuildmat.2019.06.031
[59] 向文艺. 一种纳米气凝胶隔音隔热毡: 201921543045.8[P]. 2019-09-17.
XIANG Wenyi. A sound and heat insulation felt based on nano aerogel: 201921543045.8[P]. 2019-09-17.
[1] ZHANG Chudan, WANG Rui, WANG Wenqing, LIU Yanyan, CHEN Rui. Synthesis and properties of cationic modified flame retardant polyester fabrics [J]. Journal of Textile Research, 2022, 43(12): 109-117.
[2] CHU Yanyan, LI Shichen, CHEN Chao, LIU Yingying, HUANG Weihan, ZHANG Yue, CHEN Xiaogang. Research progress in bulletproof flexible textile materials and structures [J]. Journal of Textile Research, 2022, 43(12): 203-212.
[3] FANG Yinchun, CHEN Lüxin, LI Junwei. Preparation and properties of flame retardant and superhydrophobic polyester/cotton fabrics [J]. Journal of Textile Research, 2022, 43(11): 113-118.
[4] CAO Congcong, TANG Longshi, LIU Yuanjun, ZHAO Xiaoming. Research progress of inorganic antibacterial fabrics [J]. Journal of Textile Research, 2022, 43(11): 203-211.
[5] GAO Qiang, FAN Haojun, YAN Jun, CHEN Yuguo, ZHENG Ping. Bionic construction of three-dimentional super hydrophobic microfiber suede leather [J]. Journal of Textile Research, 2022, 43(10): 126-132.
[6] CHEN Junxian, LI Weiping, FU Qixuan, FENG Xinxing, ZHANG Hua. Preparation and properties of aramid/flame retardant viscose/flame retardant polyamide blended fabrics [J]. Journal of Textile Research, 2022, 43(09): 107-114.
[7] YANG Huiyu, ZHOU Jingyi, DUAN Zijian, XU Weilin, DENG Bo, LIU Xin. Research progress in textile surface multifunctional modification by atomic layer deposition [J]. Journal of Textile Research, 2022, 43(09): 195-202.
[8] XIONG Tanping, TAN Fei, HUANG Cheng, YAN Kelu, ZOU Ni, WANG Zheng, YE Jingping, JI Bolin. Antimicrobial properties of chloramine-grafted polyester/polyamide microfiber knitted fabrics [J]. Journal of Textile Research, 2022, 43(08): 101-106.
[9] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[10] GONG Xuebin, LIU Yuanjun, ZHAO Xiaoming. Research progress of aerogel materials for thermal protection [J]. Journal of Textile Research, 2022, 43(06): 187-196.
[11] NAN Qingqing, ZENG Qinghong, YUAN Jingxuan, WANG Xiaoqin, ZHENG Zhaozhu, LI Gang. Advances on antibacterial textiles [J]. Journal of Textile Research, 2022, 43(06): 197-205.
[12] HUANG Yiting, CHENG Xianwei, GUAN Jinping, CHEN Guoqiang. Phosphorus/nitrogen-containing flame retardant for flame retardant finishing of polyester/cotton blended fabric [J]. Journal of Textile Research, 2022, 43(06): 94-99.
[13] WEI Na'na, LIU Die, MA Zheng, JIAO Chenlu. Adsorption performance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method [J]. Journal of Textile Research, 2022, 43(02): 53-60.
[14] LIN Meixia, WANG Jiawen, XIAO Shuang, WANG Xiaoyun, LIU Hao, HE Yin. Preparation and performance of high sensitive ultra-compressed bio-based carbonized flexible pressure sensor [J]. Journal of Textile Research, 2022, 43(02): 61-68.
[15] LI Zhenzhen, ZHI Chao, YU Lingjie, ZHU Hai, DU Mingjuan. Preparation and properties of waste cotton regenerative aerogel/warp-knitted spacer fabric composites [J]. Journal of Textile Research, 2022, 43(01): 167-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!