Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 111-120.doi: 10.13475/j.fzxb.20210501310
• Dyeing and Finishing & Chemicals • Previous Articles Next Articles
ZHANG Yaning1,2,3, ZHANG Hui1,2,3(), SONG Yueyue1,2,3, LI Wenming1,2,3, LI Wenjun1,2,3, YAO Jiale1,2,3
CLC Number:
[1] | HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: possible approaches[J]. Journal of Environment Management, 2016, 182:351-366. |
[2] | SINGH R L, SINGH P K, SINGH R P, et al. Enzymatic decolorization and degradation of azo dyes:areview[J]. International Biodeteriorationand Biodegradation, 2015, 104: 21-31. |
[3] |
TANG L, YU J F, PANG Y, et al. Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal[J]. Chemical Engineering Journal, 2018, 336:160-169.
doi: 10.1016/j.cej.2017.11.048 |
[4] |
WANG C Y, PAN R Y, WAN X Y, et al. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China[J]. International Journal of Environmental Research and Public Health, 2020.DOI: 10.3390/ijerph17051729.
doi: 10.3390/ijerph17051729 |
[5] | 陈海明, 董侠, 赵莹, 等. 废弃一次性医用口罩的回收利用与化学升级再造[J]. 高分子学报, 2020, 51(12): 1295-1306. |
CHEN Haiming, DONG Xia, ZHAO Ying, et al. Recycling and chemical upcycling of waste disposable medical masks[J]. Acta Polymerica Sinica, 2020, 51(12): 1295-1306. | |
[6] | GOPAKUMAR DA, PASQUINI D, HENRIQUE MA, et al. Meldrum's acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle removal[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 2026-2033. |
[7] |
SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986.
doi: 10.1021/cr5001892 |
[8] |
LI P, WANG J, PENG T, et al. Heterostructure of anatase-rutile aggregates boosting the photoreduction of U(VI)[J]. Applied Surface Science, 2019, 483: 670-676.
doi: 10.1016/j.apsusc.2019.03.330 |
[9] |
LIU Q, ZHOU B B, XU M, et al. Integration of nanosized ZIF-8 particles onto mesoporous TiO2 nanobeads for enhanced photocatalytic activity[J]. RSC Advances, 2017, 7(13): 8004-8010.
doi: 10.1039/C6RA28277F |
[10] |
JIAO L, WANG Y, JIANG H L, et al. Metal-organic frameworks as platforms for catalytic applications[J]. Advanced Materials, 2018.DOI: 10.1002/adma.201703663.
doi: 10.1002/adma.201703663. |
[11] | LIY, ZHOU K, HE M, et al. Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption[J]. Micropororous and Mesoporous Materials, 2016, 234:287-292. |
[12] |
YOON S, CALVO J, SO M J C. Removal of Acid Orange 7 from aqueous solution by metal-organic frameworks[J]. Crystals, 2018.DOI: 10.3390/cryst9010017.
doi: 10.3390/cryst9010017 |
[13] |
FU N, REN X C. Synthesis of double-shell hollow TiO2@ZIF-8 nanoparticles with enhanced photocatalytic activities[J]. Frontiers in Chemistry, 2020. DOI: 10.3389/fchem.2020.578847.
doi: 10.3389/fchem.2020.578847. |
[14] |
MING Z, SHANG Q, WAN Y, et al. Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation[J]. Applied Catalysis B-Environmental, 2018, 241: 149-158.
doi: 10.1016/j.apcatb.2018.09.036 |
[15] |
ZENG X, HUANG L, WANG C, et al. Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect[J]. ACS Applied Materials and Interfaces, 2016, 8(31): 20274-20282.
doi: 10.1021/acsami.6b05746 |
[16] |
JIA M, YANG Z, XU H, et al. Integrating N and F co-doped TiO2 nanotubes with ZIF-8 as photoelectrode for enhanced photo-electrocatalytic degradation of sulfamethazine[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.124388.
doi: 10.1016/j.cej.2020.124388. |
[17] |
PIPELZADEH E, RUDOLPH V, HANSON G, et al. Photoreduction of CO2 on ZIF-8/TiO2 nanocomposites in a gaseous photoreactor under pressure swing[J]. Applied Catalysis B-Environmental, 2017, 218: 672-678.
doi: 10.1016/j.apcatb.2017.06.054 |
[18] | DING Y, XU Y, DING B, et al. Structure induced selective adsorption performance of ZIF-8 nanocrystals in water[J]. Colloidsand Surfaces A-Physicochemicaland Engineering Aspects, 2017, 520: 661-667. |
[19] | VOROKH A S. Scherrer formula: estimation of error in determining small nanoparticle size[J]. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(3): 364-369. |
[20] |
LI R, LI W, JIN C, et al. Fabrication of ZIF-8@TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation[J]. Journalof Alloysand Compoumds, 2020. DOI: 10.1016/j.jallcom.2020.154008.
doi: 10.1016/j.jallcom.2020.154008. |
[21] | SUN Y, LI X, VIJAYAKUMAR A, et al. Hydrogen generation and degradation of organic dyes by new piezocatalytic 0.7Bi FeO3-0.3Ba TiO3 nanoparticles with proper band alignment[J]. ACS Appiled Materials and Interfaces, 2021, 13(9): 11050-11057. |
[22] |
CHU C Y, HUANG M H. Facet-dependent photocatalytic properties of Cu2O crystals probed by using electron, hole and radical scavengers[J]. Journal of Materials Chemistry A, 2017, 5(29): 15116-15123.
doi: 10.1039/C7TA03848H |
[23] |
CHEN T, ZHANG H, HAN Y, et al. Photocatalytic mechanism and performance of a novel wool flake-BiFeO3 nanosheet-TiO2 (wool-BFO-TiO2) core-shell structured composite photocatalyst[J]. Nanotechnology, 2021.DOI: 10.1088/1361-6528/abf072.
doi: 10.1088/1361-6528/abf072 |
[24] |
ZHONG W L, LI C, LIU X M, et al. Liquid phase deposition of flower-like TiO2 microspheres decorated by ZIF-8 nanoparticles with enhanced photocatalytic activity[J]. Microporousand Mesoporous Materials, 2020. DOI: 10.1016/j.micromeso.2020.110401.
doi: 10.1016/j.micromeso.2020.110401. |
[25] | SHAHRAK M N, GHAHRAMANINEZHAD M, EYDIFARASH M. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution[J]. Environmental Scienceand Pollution Research, 2017, 24(10): 9624-9634. |
[26] |
TRAN U P N, LE K K A, PHAN N T S. Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction[J]. ACS Catalysis, 2011, 1(2): 120-127.
doi: 10.1021/cs1000625 |
[27] |
RONG P, REN S, JIANG J C, et al. Preparation and photocatalytic properties of metal-doped ZnO nanofilms grown on graphene-coated flexible substrates[J]. Materials, 2020.DOI: 10.3390/ma13163589.
doi: 10.3390/ma13163589 |
[28] |
BANFANA A P, YAN X R, WEI X, et al. Polypropylene nanocomposites reinforced with low weight percent graphene nanoplatelets[J]. Composites Part B-Engineering, 2017, 109: 101-107.
doi: 10.1016/j.compositesb.2016.10.048 |
[29] |
LIU S, WANG J, YU J. ZIF-8 derived bimodal carbon modified ZnO photocatalysts with enhanced photocatalytic CO2 reduction performance[J]. RSC Advances, 2016, 6(65): 59998-60006.
doi: 10.1039/C6RA11264A |
[30] |
KUMAR P N, DEEPA M, SRIVASTAVA A K. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell[J]. Physical Chemistry Chemical Physics, 2015, 17(15): 10040-10052.
doi: 10.1039/C4CP05820H |
[31] |
JING Y, LEI Q, XIA C, et al. Synthesis of Ag and AgCl co-doped ZIF-8 hybrid photocatalysts with enhanced photocatalytic activity through a synergistic effect[J]. RSC Advances, 2020, 10(2): 698-704.
doi: 10.1039/C9RA10100D |
[32] |
RAN J, WANG C, ZHANG J, et al. New insight into polydopamine@ZIF-8 nanohybrids: a zinc-releasing container for potential anticancer activity[J]. Polymers, 2018.DOI: 10.3390/polym10050476.
doi: 10.3390/polym10050476 |
[33] |
LI S, CHEN J, ZHENG F, et al. Synthesis of the double-shell anatase-rutile TiO2 hollow spheres with enhanced photocatalytic activity[J]. Nanoscale, 2013, 5(24): 12150-12155.
doi: 10.1039/c3nr04043g |
[34] | HU C, HUANG Y C, CHANG A L, et al. Amine functionalized ZIF-8 as a visible-light-driven photocatalyst for Cr(VI) reduction[J]. Journal of Collold and Interface Science, 2019, 553:372-381. |
[35] |
ZHAN Y F, LAN J W, SHANG J J, et al. Durable ZIF-8/Ag/AgCl/TiO2 decorated PAN nanofibers with high visible light photocatalytic and antibacterial activities for degradation of dyes[J]. Journal of Alloys and Compounds, 2020.DOI: 10.1016/j.jallcom.2019.153579.
doi: 10.1016/j.jallcom.2019.153579. |
[36] | DONG P, ZHANG Y, NIE X, et al. A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction[J]. Journal of CO2 Utilization, 2018, 24: 369-375. |
[37] |
LIU X, ZHANG J, DONG Y, et al. A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/g-C3N4 with highly enhanced photocatalytic activity under simulated sunlight[J]. New Journal of Chemistry, 2018, 42(14): 12180-12187.
doi: 10.1039/C8NJ01782D |
[38] |
FAZAELI R, ALIYAN H. Novel hierarchical TiO2@ZIF-8 for photodecolorization of semi-real sample bromothymol blue aqueous solution[J]. Journal of the Iranian Chemical Society, 2019, 16(1): 1-9.
doi: 10.1007/s13738-018-1475-z |
[39] |
YU Y M, XIA J X, CHEN C, et al. One-step synthesis of a visible-light driven C@N-TiO2 porous nanocomposite: Enhanced absorption, photocatalytic and photoelectrochemical performance[J]. Journal of Physics and Chemistry of Solids, 2020. DOI: 10.1016/j.jpcs.2019.109169.
doi: 10.1016/j.jpcs.2019.109169. |
[40] |
YAN D, WU X, PEI J Y, et al. Construction of g-C3N4/TiO2/Ag composites with enhanced visible-light photocatalytic activity and antibacterial properties[J]. Ceramics International, 2020, 46(1): 696-702.
doi: 10.1016/j.ceramint.2019.09.022 |
[41] |
LIU Y T, CAI T, WANG L L, et al. Hollow microsphere TiO2/ZnO p-n heterojuction with high photocatalytic performance for 2,4-dinitropheno mineralization[J]. Nano, 2017. DOI: 10.1142/S179329201750076X.
doi: 10.1142/S179329201750076X |
[1] | LIANG Jiaojiao, WANG Jingjing, XIA Yumin, ZHU Xinyuan, YAN Bing, SUN Liming, WANG Yanping, HE Yong, WANG Yimin. Preparation and properties of normal pressure-anionic dyeable polypropylene fiber based on polyionic liquid [J]. Journal of Textile Research, 2022, 43(07): 17-21. |
[2] | GAO Luxi, LÜ Xuechuan, ZHANG Chi, SONG Hanlin, GAO Xiaohan. Synthesis and decolorizing performance of modified flocculant for treating dyeing wastewater [J]. Journal of Textile Research, 2022, 43(07): 121-128. |
[3] | QIAN Jiaqi, QU Jian'gang, HU Xiaolin, MAO Qinghui. Preparation and property of reduced graphene oxide/viscose-based BiVO4 photocatalyst [J]. Journal of Textile Research, 2022, 43(06): 100-106. |
[4] | FEI Jianwu, LÜ Mingze, LIU Liwei, WANG Chunhong, HAN Zhenbang. Construction of air-liquid-solid tri-phase system from bilayer micro/nanofiber membrane and its photocatalytic performance [J]. Journal of Textile Research, 2022, 43(06): 37-43. |
[5] | WANG Qian, QIAO Yansha, WANG Junshuo, LI Yan, WANG Lu. Preparation of metal phenolic network/zwitterionic polymer coated polypropylene mesh and its resistance to protein adsorption [J]. Journal of Textile Research, 2022, 43(06): 9-14. |
[6] | CHEN Peng, LIAO Shihao, SHEN Lanping, WANG Xuan, WANG Peng. Dyeing properties of polylactic acid/polyketone fibers with disperse dye [J]. Journal of Textile Research, 2022, 43(05): 12-17. |
[7] | LIU Yu, XIE Ruyi, SONG Yawei, QI Yuanzhang, WANG Hui, FANG Kuanjun. One-bath pad dyeing technology for polyester/cotton fabric [J]. Journal of Textile Research, 2022, 43(05): 18-25. |
[8] | HAN Yijun, XU Jun, CHANG Qiqi, ZHANG Cheng. Research progress in textile-based flexible dye-sensitized solar cells [J]. Journal of Textile Research, 2022, 43(05): 185-194. |
[9] | WANG Chengcheng, GONG Xiaodan, WANG Zhen, MA Qunwang, ZHANG Liping, FU Shaohai. Preparation of binary thermochromic microcapsules and application in smart textiles [J]. Journal of Textile Research, 2022, 43(05): 38-42. |
[10] | XIE Mengyu, HU Xiaolin, LI Xing, QU Jian'gang. Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose multi-layer composite [J]. Journal of Textile Research, 2022, 43(04): 117-123. |
[11] | WANG Dongwei, FANG Kuanjun, LIU Xiuming, ZHANG Xinqing, AN Fangfang. Preparation of amino-modified Reactive Red 195/polymer nanospheres and its application on dyeing of cotton fabrics [J]. Journal of Textile Research, 2022, 43(04): 90-96. |
[12] | WANG Ju, ZHANG Liping, WANG Xiaochun, YANG Mengyang. Preparation of highly hydrophobic dyes and their dyeing of ultra-high molecular weight polyethylene fabric [J]. Journal of Textile Research, 2022, 43(04): 97-101. |
[13] | HE Yang, ZHANG Ruiping, HE Yong, FAN Aimin. Dyeing properties of laser modified polyester fabrics with disperse dyes [J]. Journal of Textile Research, 2022, 43(04): 102-109. |
[14] | HE Yingting, LI Min, FU Shaohai. Preparation and reduction-oxidation process of indigo dispersant [J]. Journal of Textile Research, 2022, 43(04): 84-89. |
[15] | HE Yingting, LI Min, WANG Ruifeng, WANG Chunxia, FU Shaohai. Dyeing process for polyester fabrics with continuous pad dyeing method [J]. Journal of Textile Research, 2022, 43(03): 110-115. |