Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 149-154.doi: 10.13475/j.fzxb.20210501606

• Apparel Engineering • Previous Articles     Next Articles

System of seven-lead electrocardiogram monitoring based on graphene fabric electrodes

LI Ruikai1,2, LI Ruichang3, ZHU Lin2, LIU Xiangyang4()   

  1. 1. School of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071000, China
    2. Affiliated Hospital of Hebei University, Baoding, Hebei 071000, China
    3. School of Economics and Management, Hebei University of Technology, Tianjin 300401, China
    4. College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
  • Received:2021-05-08 Revised:2022-03-21 Online:2022-07-15 Published:2022-07-29
  • Contact: LIU Xiangyang E-mail:liuxy@xmu.edu.cn

Abstract:

Aiming at the problems that Ag/AgCl gel electrode is not suitable for long-term monitoring and the single lead for wearable electrocardiogram (ECG) device is insufficient for precise examination, a seven-lead wearable ECG monitoring system based on graphene fabric electrode was designed. The system was made of four parts, i.e. the cotton/T400 blended high-elastic ECG suit, a graphene fabric electrode, a seven-lead ECG acquisition terminal, and an APP for data display. The continuous work hours, continuous wearing signal quality and multiple usage scenarios of the system were measured for analysis. The test results show that the SNR (signal/noise ratio) of ECG signal is about 29.8 dB after wearing the graphene fabric electrode for 7 days continuously. The device with a 250 mA·h lithium battery can be used for a maximum of 5 days. It has high reliability, accuracy and wearability in multiple test scenarios of resting, walking, jogging and resting spontaneous sweating. To some extent, it has great potential for continuous remote monitoring.

Key words: graphene fabric electrodes, smart textiles, seven-lead, wearable electrocardiogram monitoring terminal, low energy, cotton/T400 blended high-elastic electrocardiogram suit

CLC Number: 

  • R318.6

Fig.1

Design drawing of whole system of wearable ECG garment"

Fig.2

Schematic diagram (a) and photographs (b) of graphene textiles electrodes"

Fig.3

Frequency-impedance relationship of graphene textiles electrodes and Ag/AgCl electrodes"

Tab.1

Amplitude and signal-to-noise ratios of detected ECG signals by graphene textiles electrode within seven days"

时间/d 电压幅值/mV 信噪比/dB
1 18.6 23.9
2 18.2 28.3
3 18.3 34.2
4 21.2 29.1
5 26.9 32.3
6 25.8 27.9
7 30.2 29.8

Fig.4

APP process flow chart"

Fig.5

APP real-time ECG in different scenes"

[1] 胡盛寿. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545.
HU Shengshou. Report on cardiovascular health and diseases burden in china: an updated summary of 2020[J]. Chinese Circulation Journal, 2021, 36(6): 521-545.
[2] CHO H S, KOO S M, LEE J, et al. Heart monitoring garments using textile electrodes for healthcare applications[J]. Journal of Medical Systems, 2011, 35(2): 189-201.
doi: 10.1007/s10916-009-9356-8
[3] 黄海诚, 汪丰. 可穿戴技术在医疗中的研究与应用[J]. 中国医疗设备, 2015, 30(1): 1-5.
HUANG Haicheng, WANG Feng. Research and application of wearable technology in medical treatment[J]. China Medical Devices, 2015, 30(1): 1-5.
[4] SAGHIR N, AGGARWAL A, SONEJI N, et al. A comparison of manual electrocardiographic interval and waveform analysis in lead 1 of 12-lead ECG and Apple Watch ECG: a validation study[J]. Cardiovascular Digital Health Journal, 2020, 1(1): 30-36.
doi: 10.1016/j.cvdhj.2020.07.002
[5] 杜欣, 曾伟杰, 李承炜, 等. 基于移动医疗的孕产妇健康监护系统[J]. 生物医学工程学杂志, 2016, 33(1): 2-7.
pmid: 27382731
DU Xin, ZENG Weijie, LI Chengwei, et al. A maternal health care system based on mobile health care[J]. Journal of Biomedical Engineering, 2016, 33(1): 2-7.
pmid: 27382731
[6] YAZICIOGLU R F, TORFS T, PENDERS J, et al. Ultra-low-power wearable biopotential sensor nodes[C]// 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis: IEEE, 2009: 3205-3208.
[7] 李严, 张元亭. 一种用于可穿戴式生理参数检测的集成电路[J]. 电子技术应用, 2016, 42(11): 18-21.
LI Yan, ZHANG Yuanting. An integrated circuit for the wearable devices measuring physiological parameters[J]. Application of Electronic Technique, 2016, 42(11): 18-21.
[8] TADESSE G A, JAVED H, WELDEMARIAM K, et al. DeepMI: deep multi-lead ECG fusion for identifying myocardial infarction and its occurrence-time[J]. Artificial Intelligence in Medicine, 2021. DOI: 10.1016/j.artmed.2021.102192.
doi: 10.1016/j.artmed.2021.102192.
[9] YANG T, GREGG R E, BABAEIZADEH S. Big data reveals insights for lead importance in ECG interpretation[J]. Journal of Electrocardiology, 2021, 69: 12-22.
doi: 10.1016/j.jelectrocard.2021.01.002
[10] RANDAZZO V, FERRETTI J, PASERO E. ECG watch: a real time wireless wearable ECG[C]// 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Istanbul:IEEE, 2019: 1-6.
[11] LEE Y D, CHUNG W Y. Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring[J]. Sensors & Actuators B Chemical, 2009, 140(2): 390-395.
[12] LI B M, MILLS A C, FLEWWELLIN T J, et al. Influence of armband form factors on wearable ECG monitoring performance[J]. IEEE Sensors Journal, 2021, 21(9): 11046-11060.
doi: 10.1109/JSEN.2021.3059997
[13] LOU C, LI R, LI Z, et al. Flexible graphene electrodes for prolonged dynamic ECG monitoring[J]. Sensors, 2016, 16(11): 1833-1844.
doi: 10.3390/s16111833
[14] FAN M H, GUAN C, WANG L H, et al. Three-lead ECG detection system based on an analog front-end circuit ADS1293[C]// 2017 IEEE International Conference on Consumer Electronics. Taiwan: ICCE-China, 2017: 107-108.
[15] CELIK N, MANIVANNAN N, STRUDWICUK A, et al. Graphene-enabled electrodes for electrocardiogram monitoring[J]. Nanomaterials, 2016, 6(9): 1-16.
doi: 10.3390/nano6010001
[16] GAO K, SHAO Z, XUE W, et al. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper[J]. Carbohydrate Polymers, 2013, 97(1): 243-251.
doi: 10.1016/j.carbpol.2013.03.067
[17] TUNG V C, ALLEN M J, YANG Y, et al. High-throughput solution processing of large-scale graphene[J]. Nature Nanotechnology, 2009, 4(1): 25-29.
doi: 10.1038/nnano.2008.329
[18] CHENG H, HU C, ZHAO Y, et al. Graphene fiber: a new material platform for unique applications[J]. NPG Asia Materials, 2014, 6(7): 113-125.
[19] 李承炜, 宁玉萍, 陈军, 等. 基于ADS1293的穿戴式心电检测装置设计与实现[J]. 电子技术应用, 2017, 43(9): 8-12.
LI Chengwei, NING Yuping, CHEN Jun, et al. Design and implementation of a wearable ECG device based on ADS1293[J]. Application of Electronic Technique, 2017, 43(9): 8-12.
[20] 何伶俐, 王宇峰, 祝元仲, 等. 基于ADS1293的便携式低功耗心电信号采集系统[J]. 电子科技, 2014, 27(7): 117-119.
HE Lingli, WANG Yufeng, ZHU Yuanzhong, et al. Design of an acquisition system for portable and low-power ECG based on the ADS1293[J]. Electronic Science and Technology, 2014, 27(7): 117-119.
[21] 曹然彬, 基于CC2541芯片的蓝牙数据采集系统的设计与实现[J]. 电子科学技术, 2017, 4(4): 12-15.
CAO Ranbin. The design and implementation of the bluetooth data acquisition system based on CC2541 chip[J]. Electronic Science & Technology, 2017, 4(4): 12-15.
[22] 冯伟东, 孙莹, 曲东超, 等. 信号的多分辨率分析在消噪中的应用[J]. 长春工业大学学报(自然科学版), 2007, 28(1): 101-104.
FENG Weidong, SUN Ying, QU Dongchao, et al. The application of signal multi-resolution analysis in noise elimination[J]. Journal of Changchun University of Techonology (Natural Science Edition), 2007, 28(1): 101-104.
[23] 熊鹏, 刘学朋, 杜海曼, 等. 基于平稳和连续小波变换融合算法的心电信号P, T波检测[J]. 电子与信息学报, 2021, 43(5): 1-7.
XIONG Peng, LIU Xuepeng, DU Haiman, et al. Detection of ECG signal P and T wave based on stationary and continuous wavelet transform fusion[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1-7.
[24] 陈远贵, 罗保钦, 曾庆宁. 基于一种新的小波阈值函数的心音信号去噪[J]. 计算机仿真, 2010, 27(11): 319-323.
CHEN Yuangui, LUO Baoqin, ZENG Qingning. Heart sound signal de-noising based on a new wavelet threshold function[J]. Computer Simulation, 2010, 27(11): 319-323.
[25] 曹鸯婷, 陈俊丽. 改进型阈值提取心电信号的R峰值[J]. 电子测量技术, 2015, 38(12): 107-110.
CAO Yangting, CHEN Junli. Improved threshold extraction of R peak[J]. Electronic Measurement Technology, 2015, 38(12): 107-110.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .