Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (05): 77-85.doi: 10.13475/j.fzxb.20210504109
• Fiber Materials • Previous Articles Next Articles
YANG Ke1, YAN Jun1, XIAO Yong2, XU Jing3, CHEN Lei1(), LIU Yong1
CLC Number:
[1] | 陈悦, 赵永欢, 褚朱丹, 等. 基于碳纤维及其织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(2): 173-180. |
CHEN Yue, ZHAO Yonghuan, CHU Zhudan, et al. Research progress of flexible lithium battery electrodes based oncarbon fibers and their fabrics[J]. Journal of Textile Research, 2019, 40(2): 173-180. | |
[2] |
YU H, CHEN L, LI W, et al. Root-whisker structured 3D CNTs-CNFs network based on coaxial electrospinning: a free-standing anode in lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 863: 158481.
doi: 10.1016/j.jallcom.2020.158481 |
[3] | GWON H, HONG J, KIM H, et al. Recent progress on flexible lithium rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 538-551. |
[4] |
ZENG L C, QIU L, CHENG H M. Towards the practical use of flexible lithium ion batteries[J]. Energy Storage Materials, 2019, 23: 434-438.
doi: 10.1016/j.ensm.2019.04.019 |
[5] |
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
doi: 10.1021/ja3091438 |
[6] |
FANG G, ZHOU J, PAN A, et al. Recent advances in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2480-2501.
doi: 10.1021/acsenergylett.8b01426 |
[7] |
KIM H, JEONG G, KIM Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chemical Society Reviews, 2013, 42(23): 9011-9034.
doi: 10.1039/c3cs60177c |
[8] | XU C X, ZHANG Y, ZHANG N Q, et al. 2020 roadmap on zinc metal batteries[J]. Chemistry, 2020, 15(22): 3696-3708. |
[9] |
XU C J, LI B H, DU H D, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angewandte Chemie: International Edition, 2012, 51(4): 933-935.
doi: 10.1002/anie.201106307 |
[10] | LI H, HAN C, HUANG Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte[J]. Energy & Environmental Science, 2018, 11(4): 941-951. |
[11] |
JIANG W W, XU X J, LIU Y X, et al. Facile plasma treated β-MnO2@C hybrids for durable cycling cathodes in aqueous Zn-ion batteries[J]. Journal of Alloys and Compounds, 2020, 827: 154273.
doi: 10.1016/j.jallcom.2020.154273 |
[12] |
CHAMOUN M, BRANT W R, TAI C W, et al. Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions[J]. Energy Storage Materials, 2018, 15: 351-360.
doi: 10.1016/j.ensm.2018.06.019 |
[13] |
SUN W, WANG F, HOU S Y, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J]. Journal of The American Chemical Society, 2017, 139(29): 9775-9778.
doi: 10.1021/jacs.7b04471 |
[14] |
XU D W, LI B H, WEI C G, et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc Ions[J]. Electrochimica Acta, 2014, 133: 254-261.
doi: 10.1016/j.electacta.2014.04.001 |
[15] |
CHO I, CHOI J, KIM K, et al. A comparative investigation of carbon black (super-P) and vapor-grown carbon fibers (VGCFs) as conductive additives for lithium-ion battery cathodes[J]. RSC Advances, 2015, 5(115): 95073-95078.
doi: 10.1039/C5RA19056H |
[16] | OZGIT D, HIRALAL P, AMARATUNGA G A J. Improving performance and cyclability of zinc-silver oxide batteries by using graphene as a two dimensional conductive additive[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 20752-20757. |
[17] | WU B K, ZHANG G B, YAN M Y, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous zn-ion battery[J]. Small, 2018, 14(13):1703805. |
[18] |
KHAMSANGA S, PORNPRASERTSUK R, YONEZAWA T, et al. δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries[J]. Scientific Reports, 2019, 9:8441.
doi: 10.1038/s41598-019-44915-8 |
[19] |
HUANG Y, LI Z, JIN S, et al. Carbon nanohorns/nanotubes: an effective binary conductive additive in the cathode of high energy-density zinc-ion rechargeable batteries[J]. Carbon, 2020, 167: 431-438.
doi: 10.1016/j.carbon.2020.05.056 |
[20] |
CHEN R Z, HU Y, SHEN Z, et al. Facile fabrication of foldable electrospun polyacrylonitrile-based carbon nanofibers for flexible lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(25): 12914-12921.
doi: 10.1039/C7TA02528A |
[21] | 康卫民, 范兰兰, 邓南平, 等. 静电纺丝多孔碳纳米纤维制备与应用研究进展[J]. 纺织学报, 2017, 38(11): 168-176. |
KANG Weimin, FAN Lanlan, DENG Nanping, et al. Research progress in preparation and application of electrospinning porous carbon nanofibers[J]. Journal of Textile Research, 2017, 38(11): 168-176. | |
[22] |
CHIANG Y C, WU C Y, CHEN Y J. Effects of activation on the properties of electrospun carbon nanofibers and their adsorption performance for carbon dioxide[J]. Separation and Purification Technology, 2020, 233:116040.
doi: 10.1016/j.seppur.2019.116040 |
[23] |
LI B, GE X M, GOH F W T, et al. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries[J]. Nanoscale, 2015, 7(5): 1830-1838.
doi: 10.1039/C4NR05988C |
[24] |
LIANG H W, WU Z Y, CHEN L F, et al. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery[J]. Nano Energy, 2015, 11: 366-376.
doi: 10.1016/j.nanoen.2014.11.008 |
[25] |
SHANG C Q, YANG M Y, WANG Z Y, et al. Encapsulated MnO in N-doping carbon nanofibers as efficient ORR electrocatalysts[J]. Science China Materials, 2017, 60(10): 937-946.
doi: 10.1007/s40843-017-9103-1 |
[26] |
LIU G X, HUANG H W, BI R, et al. K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(36): 20806-20812.
doi: 10.1039/C9TA08049J |
[27] |
LONG J, YANG Z, YANG F, et al. Electrospun core-shell Mn3O4/carbon fibers as high-performance cathode materials for aqueous zinc-ion batteries[J]. Electrochimica Acta, 2020, 344:136155.
doi: 10.1016/j.electacta.2020.136155 |
[28] |
LIU H D, HU Z L, SU Y Y, et al. MnO2 nanorods/3D-rGO composite as high performance anode materials for Li-ion batteries[J]. Applied Surface Science, 2017, 392: 777-784.
doi: 10.1016/j.apsusc.2016.09.104 |
[29] |
WANG F, DAI H, DENG J, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene[J]. Environmental Science & Technology, 2012, 46(7): 4034-4041.
doi: 10.1021/es204038j |
[30] |
ISLAM S, ALFARUQI M H, SONG J, et al. Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications[J]. Journal of Energy Chemistry, 2017, 26(4): 815-819.
doi: 10.1016/j.jechem.2017.04.002 |
[31] |
SUN W, BAI J, LI C, et al. Effect of graphitization degree of electrospinning carbon fiber on catalytic oxidation of styrene and electrochemical properties[J]. Chemical Physics Letters, 2019, 715: 299-309.
doi: 10.1016/j.cplett.2018.11.055 |
[32] |
KATAOKA F, ISHIDA T, NAGITA K, et al. Cobalt-doped layered MnO2 thin film electrochemically grown on nitrogen-doped carbon cloth for aqueous zinc-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(5): 4720-4726.
doi: 10.1021/acsaem.0c00357 |
[33] |
JIA X, LIU C, NEALE Z G, et al. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry[J]. Chemical Reviews, 2020, 120(15): 7795-7866.
doi: 10.1021/acs.chemrev.9b00628 |
[34] |
SONG M, TAN H, CHAO D, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41):1802564.
doi: 10.1002/adfm.201802564 |
[35] |
HUANG J, TU J, LV Y, et al. Achieving mesoporous MnO2@polyaniline nanohybrids via a gas/liquid interfacial reaction between aniline and KMnO4 aqueous solution towards Zn-MnO2 battery[J]. Synthetic Metals, 2020, 266:116438.
doi: 10.1016/j.synthmet.2020.116438 |
[36] |
HUANG J H, WANG Z, HOU M Y, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications, 2018, 9:2906.
doi: 10.1038/s41467-018-04949-4 |
[37] |
FU Y Q, WEI Q L, ZHANG G X, et al. High-performance reversible aqueous zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon[J]. Advanced Energy Materials, 2018, 8(26):1801445.
doi: 10.1002/aenm.201801445 |
[38] |
PAN H L, SHAO Y Y, YAN P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nature Energy, 2016.DOI: 10.1038/nenergy.2016.39.
doi: 10.1038/nenergy.2016.39 |
[39] |
YAO Z F, CAI D P, CUI Z X, et al. Strongly coupled zinc manganate nanodots and graphene composite as an advanced cathode material for aqueous zinc ion batteries[J]. Ceramics International, 2020, 46(8): 11237-11245.
doi: 10.1016/j.ceramint.2020.01.148 |
[40] |
SHI M J, XIAO P, YANG C, et al. Scalable gas-phase synthesis of 3D microflowers confining MnO2 nanowires for highly-durable aqueous zinc-ion batteries[J]. Journal of Power Sources, 2020, 463:228209.
doi: 10.1016/j.jpowsour.2020.228209 |
|