Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (05): 77-85.doi: 10.13475/j.fzxb.20210504109

• Fiber Materials • Previous Articles     Next Articles

Preparation of MnOx/carbon nanofiber membrane free-standing cathodes for zinc ion battery based on electrochemical deposition and their electrochemical characteristics

YANG Ke1, YAN Jun1, XIAO Yong2, XU Jing3, CHEN Lei1(), LIU Yong1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Institute of Nonmetallic Materials of Shandong, Ji'nan, Shandong 250031, China
    3. Technical Service Center of Quanzhou Customs, Quanzhou, Fujian 362000, China
  • Received:2021-05-17 Revised:2022-01-05 Online:2022-05-15 Published:2022-05-30
  • Contact: CHEN Lei E-mail:chenlei@tiangong.edu.cn

Abstract:

To develop cathode materials for rechargeable zinc ion batteries (ZIBs) with excellent performance and a simple preparation process, electrospun nanofiber membranes were used as precursors to prepare carbon nanofiber films (CNFs) by pre-oxidation and high-temperature carbonization. MnOx/CNFs composites with the skin-core structure were prepared by using electrochemical deposition method with CNFs as substrate. The effects of electrochemical deposition time on the surface morphology, specific surface area, cyclic charge-discharge stability, and rate performance of MnOx/CNFs composites were discussed. The results show that the electrochemical deposition method promotes a good interfacial bonding between the loaded active material and the CNFs substrate and improves the ion and electron transport capacity at the interface. The specific capacity can reach 647.9 mA·h/g after the activation at the current density of 0.1 A/g. In addition, the ZIBs with MnOx/CNFs cathode via depositing MnOx for 2 h show the specific capacity of 221.8 mA·h/g after 500 cycles under the current density of 0.5 A/g. After cycling of charging and discharging at the current density of 2 A/g, 94% of the initial capacity can still be restored at the current density of 0.1 A/g, which represent excellent performance of MnOx/CNFs cathode.

Key words: carbon nanofiber membrane, electrochemical deposition, electrostatic spinning, free-standing material, zinc ion battery

CLC Number: 

  • TS179

Fig.1

Schematic diagram of preparation process(a)and evolution diagram of sample morphology corresponding to each step(b)of MnOx/CNFs nanofiber film"

Fig.2

SEM and TEM images of surface and section of CNFs, MnOx/CNFs-1,MnOx/CNFs-2 and MnOx/CNFs-3. (a) Surface of CNFs; (b) Surface of MnOx/CNFs-1; (c) Surface of MnOx/CNFs-2; (d) Surface of MnOx/CNFs-3; (e) Section of MnOx/CNFs-2; (f) TEM section of MnOx/CNFs-2"

Fig.3

Mn element distribution on surface of MnOx/CNFs-2"

Fig.4

XPS full spectrum(a)and Mn2p spectrum (b)of MnOx/CNFs-2"

Fig.5

XRD patterns of CNFs and MnOx/CNFs-2 (a) and crystal structure of α-MnO2(b)"

Fig.6

N2 adsorption-desorption isothermal curves"

Fig.7

CV curves of MnOx/CNFs-2"

Fig.8

Second cycle charge-discharge curves of CNFs、MnOx/CNFs-1、MnOx/CNFs-2、and MnOx/CNFs-3 at 0.1 A/g current density"

Fig.9

Electrochemical performance of CNFs, MnOx/CNFs-1, MnOx/CNFs-2 and MnOx/CNFs-3. (a) Recycling performance at 0.1 A/g current density; (b) Rate performance of different cathode materials; (c) Long recycle performance at 0.5 A/g current density"

Tab.1

Comparison of the Capacity of MnOx/CNFs with some other carbon-based material"

材料 循环次数 电流密度/(A·g-1) 比容量/(mA·h·g-1) 数据来源
MnOx/碳纳米纤维 50 0.1 ~340 本文
500 0.5 ~200
β-MnO2/C 250 0.2 ~150 [11]
石墨烯 50 0.1 ~20 [16]
石墨烯 800 7 ~87.4 [17]
碳纳米角/碳纳米管 500 3 ~159.1 [19]
MnOx/N-C 600 0.5 ~240 [37]
Mn3O4/C 450 0.5 ~215 [27]
MnO2/碳纳米管 1 000 2.77 ~100 [10]
ZnMn2O4NDs/还原氧化石墨烯 100 0.2 ~207.6 [39]
碳布/MnO2 200 1.2 ~250 [32]
δ-MnO2/石墨烯 100 0.4 ~114.2 [18]
MnO2/石墨烯 10 000 2 ~190 [40]
MnO2/碳纳米管 500 5 ~100 [14]
MnO2/C 50 0.066 ~189 [30]

Fig.10

SEM images of MnOx/CNFs-2 before(a)and after (b) long-term recycling"

[1] 陈悦, 赵永欢, 褚朱丹, 等. 基于碳纤维及其织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(2): 173-180.
CHEN Yue, ZHAO Yonghuan, CHU Zhudan, et al. Research progress of flexible lithium battery electrodes based oncarbon fibers and their fabrics[J]. Journal of Textile Research, 2019, 40(2): 173-180.
[2] YU H, CHEN L, LI W, et al. Root-whisker structured 3D CNTs-CNFs network based on coaxial electrospinning: a free-standing anode in lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 863: 158481.
doi: 10.1016/j.jallcom.2020.158481
[3] GWON H, HONG J, KIM H, et al. Recent progress on flexible lithium rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 538-551.
[4] ZENG L C, QIU L, CHENG H M. Towards the practical use of flexible lithium ion batteries[J]. Energy Storage Materials, 2019, 23: 434-438.
doi: 10.1016/j.ensm.2019.04.019
[5] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
doi: 10.1021/ja3091438
[6] FANG G, ZHOU J, PAN A, et al. Recent advances in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2480-2501.
doi: 10.1021/acsenergylett.8b01426
[7] KIM H, JEONG G, KIM Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chemical Society Reviews, 2013, 42(23): 9011-9034.
doi: 10.1039/c3cs60177c
[8] XU C X, ZHANG Y, ZHANG N Q, et al. 2020 roadmap on zinc metal batteries[J]. Chemistry, 2020, 15(22): 3696-3708.
[9] XU C J, LI B H, DU H D, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angewandte Chemie: International Edition, 2012, 51(4): 933-935.
doi: 10.1002/anie.201106307
[10] LI H, HAN C, HUANG Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte[J]. Energy & Environmental Science, 2018, 11(4): 941-951.
[11] JIANG W W, XU X J, LIU Y X, et al. Facile plasma treated β-MnO2@C hybrids for durable cycling cathodes in aqueous Zn-ion batteries[J]. Journal of Alloys and Compounds, 2020, 827: 154273.
doi: 10.1016/j.jallcom.2020.154273
[12] CHAMOUN M, BRANT W R, TAI C W, et al. Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions[J]. Energy Storage Materials, 2018, 15: 351-360.
doi: 10.1016/j.ensm.2018.06.019
[13] SUN W, WANG F, HOU S Y, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J]. Journal of The American Chemical Society, 2017, 139(29): 9775-9778.
doi: 10.1021/jacs.7b04471
[14] XU D W, LI B H, WEI C G, et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc Ions[J]. Electrochimica Acta, 2014, 133: 254-261.
doi: 10.1016/j.electacta.2014.04.001
[15] CHO I, CHOI J, KIM K, et al. A comparative investigation of carbon black (super-P) and vapor-grown carbon fibers (VGCFs) as conductive additives for lithium-ion battery cathodes[J]. RSC Advances, 2015, 5(115): 95073-95078.
doi: 10.1039/C5RA19056H
[16] OZGIT D, HIRALAL P, AMARATUNGA G A J. Improving performance and cyclability of zinc-silver oxide batteries by using graphene as a two dimensional conductive additive[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 20752-20757.
[17] WU B K, ZHANG G B, YAN M Y, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous zn-ion battery[J]. Small, 2018, 14(13):1703805.
[18] KHAMSANGA S, PORNPRASERTSUK R, YONEZAWA T, et al. δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries[J]. Scientific Reports, 2019, 9:8441.
doi: 10.1038/s41598-019-44915-8
[19] HUANG Y, LI Z, JIN S, et al. Carbon nanohorns/nanotubes: an effective binary conductive additive in the cathode of high energy-density zinc-ion rechargeable batteries[J]. Carbon, 2020, 167: 431-438.
doi: 10.1016/j.carbon.2020.05.056
[20] CHEN R Z, HU Y, SHEN Z, et al. Facile fabrication of foldable electrospun polyacrylonitrile-based carbon nanofibers for flexible lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(25): 12914-12921.
doi: 10.1039/C7TA02528A
[21] 康卫民, 范兰兰, 邓南平, 等. 静电纺丝多孔碳纳米纤维制备与应用研究进展[J]. 纺织学报, 2017, 38(11): 168-176.
KANG Weimin, FAN Lanlan, DENG Nanping, et al. Research progress in preparation and application of electrospinning porous carbon nanofibers[J]. Journal of Textile Research, 2017, 38(11): 168-176.
[22] CHIANG Y C, WU C Y, CHEN Y J. Effects of activation on the properties of electrospun carbon nanofibers and their adsorption performance for carbon dioxide[J]. Separation and Purification Technology, 2020, 233:116040.
doi: 10.1016/j.seppur.2019.116040
[23] LI B, GE X M, GOH F W T, et al. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries[J]. Nanoscale, 2015, 7(5): 1830-1838.
doi: 10.1039/C4NR05988C
[24] LIANG H W, WU Z Y, CHEN L F, et al. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery[J]. Nano Energy, 2015, 11: 366-376.
doi: 10.1016/j.nanoen.2014.11.008
[25] SHANG C Q, YANG M Y, WANG Z Y, et al. Encapsulated MnO in N-doping carbon nanofibers as efficient ORR electrocatalysts[J]. Science China Materials, 2017, 60(10): 937-946.
doi: 10.1007/s40843-017-9103-1
[26] LIU G X, HUANG H W, BI R, et al. K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(36): 20806-20812.
doi: 10.1039/C9TA08049J
[27] LONG J, YANG Z, YANG F, et al. Electrospun core-shell Mn3O4/carbon fibers as high-performance cathode materials for aqueous zinc-ion batteries[J]. Electrochimica Acta, 2020, 344:136155.
doi: 10.1016/j.electacta.2020.136155
[28] LIU H D, HU Z L, SU Y Y, et al. MnO2 nanorods/3D-rGO composite as high performance anode materials for Li-ion batteries[J]. Applied Surface Science, 2017, 392: 777-784.
doi: 10.1016/j.apsusc.2016.09.104
[29] WANG F, DAI H, DENG J, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene[J]. Environmental Science & Technology, 2012, 46(7): 4034-4041.
doi: 10.1021/es204038j
[30] ISLAM S, ALFARUQI M H, SONG J, et al. Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications[J]. Journal of Energy Chemistry, 2017, 26(4): 815-819.
doi: 10.1016/j.jechem.2017.04.002
[31] SUN W, BAI J, LI C, et al. Effect of graphitization degree of electrospinning carbon fiber on catalytic oxidation of styrene and electrochemical properties[J]. Chemical Physics Letters, 2019, 715: 299-309.
doi: 10.1016/j.cplett.2018.11.055
[32] KATAOKA F, ISHIDA T, NAGITA K, et al. Cobalt-doped layered MnO2 thin film electrochemically grown on nitrogen-doped carbon cloth for aqueous zinc-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(5): 4720-4726.
doi: 10.1021/acsaem.0c00357
[33] JIA X, LIU C, NEALE Z G, et al. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry[J]. Chemical Reviews, 2020, 120(15): 7795-7866.
doi: 10.1021/acs.chemrev.9b00628
[34] SONG M, TAN H, CHAO D, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41):1802564.
doi: 10.1002/adfm.201802564
[35] HUANG J, TU J, LV Y, et al. Achieving mesoporous MnO2@polyaniline nanohybrids via a gas/liquid interfacial reaction between aniline and KMnO4 aqueous solution towards Zn-MnO2 battery[J]. Synthetic Metals, 2020, 266:116438.
doi: 10.1016/j.synthmet.2020.116438
[36] HUANG J H, WANG Z, HOU M Y, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications, 2018, 9:2906.
doi: 10.1038/s41467-018-04949-4
[37] FU Y Q, WEI Q L, ZHANG G X, et al. High-performance reversible aqueous zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon[J]. Advanced Energy Materials, 2018, 8(26):1801445.
doi: 10.1002/aenm.201801445
[38] PAN H L, SHAO Y Y, YAN P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nature Energy, 2016.DOI: 10.1038/nenergy.2016.39.
doi: 10.1038/nenergy.2016.39
[39] YAO Z F, CAI D P, CUI Z X, et al. Strongly coupled zinc manganate nanodots and graphene composite as an advanced cathode material for aqueous zinc ion batteries[J]. Ceramics International, 2020, 46(8): 11237-11245.
doi: 10.1016/j.ceramint.2020.01.148
[40] SHI M J, XIAO P, YANG C, et al. Scalable gas-phase synthesis of 3D microflowers confining MnO2 nanowires for highly-durable aqueous zinc-ion batteries[J]. Journal of Power Sources, 2020, 463:228209.
doi: 10.1016/j.jpowsour.2020.228209
[1] GUO Zijiao, LI Yue, ZHANG Rui, LU Zan. Preparation and properties of polyaniline/Ti3C2Tx/carbon nanotube composite fiber-based electrodes [J]. Journal of Textile Research, 2022, 43(02): 74-80.
[2] XU Zhaobao, HE Cui, ZHAO Jinchao, HUANG Leping. Preparation of coaxially electrospun multi-level fiber membrane and its phase change temperature-regulating performance [J]. Journal of Textile Research, 2022, 43(02): 69-73.
[3] YE Chengwei, WANG Yi, XU Lan. Preparation and electrochemical properties of cobalt-based hierarchical porous composite carbon materials [J]. Journal of Textile Research, 2021, 42(08): 57-63.
[4] YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68.
[5] YANG Jing, LIU Yanjun. Preparation and properties of graphene-knitted electrode materials [J]. Journal of Textile Research, 2019, 40(03): 90-95.
[6] . Preparation and properties of electrospun polyacrylonitrile / copper sulfate nanofibrous membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 15-20.
[7] . Preparation and properties of laminated nanofiber-based separator with over-temperature protection function [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 21-26.
[8] . Preparation of ploy(vinylidene fluoride) /conductive TiO2 composite fiber piezoelectric membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 6-10.
[9] . Preapration and characterization of photodynamic antimicrobial poly(methyl mecthacrylate-co-methacrylic acid) electrospun nanofibrous membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 1-6.
[10] . Preparation and performance of cellulose lauric acid esters/polyethylene glycal grafted copolymer fibers [J]. Journal of Textile Research, 2016, 37(4): 7-14.
[11] . Water resistance of β-cyclodextrin/polyacrylate nanofiber films and their supramolecular capturing performance for heavy metal ions [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 1-5.
[12] . Preparation and application of carbon-coated tin antmony alloy nanofibers [J]. Journal of Textile Research, 2015, 36(03): 1-5.
[13] ZHONG Zhi-li;WANG Xun-gai. Application prospect of nanofibers [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 107-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!