Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (04): 55-61.doi: 10.13475/j.fzxb.20210504907

• Textile Engineering • Previous Articles     Next Articles

Development and performance evaluation of knitted fabric with bionic bird feather structure

WANG Jianping1,2,3,4, MIAO Mingzhu1,2, SHEN Deyao1,2, YAO Xiaofeng1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Shanghai 200051, China
    4. Shanghai Institute of International Design & Innovation, Tongji University, Shanghai 200092, China
  • Received:2021-05-19 Revised:2022-01-16 Online:2022-04-15 Published:2022-04-20
  • Contact: YAO Xiaofeng E-mail:yxf@dhu.edu.cn

Abstract:

In order to improve the wear comfort of domestic ski warm pants and shorten the gap between domestic ski wear research and development technology and foreign brands, the effect of bionic bird feather structure on the thermal and wet properties of knitted fabrics was investigated. Eight types of bionic knitted fabrics with different structures were developed according to the microstructure characteristics of feathers by combining bionics and jacquard design techniques. Based on the comparison of thermal resistance, heat preservation rate, moisture permeability, air permeability and warp and weft core suction height, the gray near-optimal matrix was established to further evaluate the thermal and wet properties of the fabrics. The application suggestions of each fabric were put forward based on the thermal and wet map of male lower extremities. The results show that groove-like type Ⅰ, bionic feather sheet fabrics have good water absorption, and bionic feather twig, bionic pinnule, and groove-like type Ⅱ fabrics have excellent warmth retention. The air permeability of hollow bubble-like type Ⅰ and type Ⅱ fabrics is outstanding.

Key words: bionic structure, bird feather structure, knitted fabric development, gray near-optimal method, fabric thermal and wet property, ski wear

CLC Number: 

  • TS941.19

Fig.1

Microstructure images of feather. (a) Full plume(×200); (b) Plade (×582); (c) Pllets (×2 640); (d) Plume axis(×50); (e) Cross section of plume branch axis(×100); (f) Cross section of plume branch axis (×500)"

Fig.2

Organization diagram of bionic bird feather fabric. (a) Bionic feather axis; (b) Bionic feather sheet; (c)Groove-like type I;(d) Groove-like type Ⅱ; (e)Bionic plade; (f)Bionic pllets;(g) Hollow bubble-like I; (h) Hollow bubble-like Ⅱ"

Fig.3

Bionic bird feather fabric. (a)Bionic feather axis; (b) Bionic feather sheet; (c)Groove-like type Ⅰ;(d) Groove-like type Ⅱ; (e)Bionic plade;(f)Bionic pllets; (g) Hollow bubble-like type Ⅰ;(h) Hollow bubble-like typeⅡ"

Tab.1

Fabric specifications and structural parameters"

试样名称 面密度/
(g·m-2)
厚度/
mm
密度/(线圈数·(5 cm)-1)
横向 纵向
1#仿羽轴 477 1.91 98 100
2#仿羽片 297 0.97 99 118
3#凹槽Ⅰ类 390 1.84 92 108
4#凹槽Ⅱ类 485 2.20 96 86
5#仿羽枝 461 1.93 99 112
6#仿羽小枝 532 2.51 95 145
7#空泡状Ⅰ类 431 2.39 86 150
8#空泡状Ⅱ类 486 2.42 95 165

Tab.2

Fabric performance test results"

试样名称 热阻/(m2·K·W-1) 保温率/% 透气率/(mm·s-1) 透湿率/
(g·m-2·(24 h)-1)
芯吸高度/cm
纵向 横向
1#仿羽轴 54.85 50.29 129.983 637.1 3.75 6.75
2#仿羽片 38.39 41.46 88.224 701.6 6.05 6.75
3#凹槽Ⅰ类 52.96 49.42 90.352 639.7 6.91 8.25
4#凹槽Ⅱ类 65.28 54.63 111.937 626.3 4.71 6.25
5#仿羽枝 65.36 54.66 128.644 647.8 4.44 6.58
6#仿羽小枝 78.92 58.28 131.873 646.9 6.36 5.90
7#空泡状Ⅰ类 58.73 52.00 151.199 686.4 5.73 6.20
8#空泡状Ⅱ类 62.29 53.47 144.231 680.0 5.32 6.40

Fig.4

Pattern Structure division. (a) Front side; (b) Back side"

Fig.5

Weaving process diagram of trouser suit"

[1] 张冰洁, 王莉, 傅维杰, 等. 滑雪内衣差异化需求多维度分析[J]. 纺织学报, 2021, 42(8):161-166.
ZHANG Bingjie, WANG Li, FU Weijie, et al. Multi-dimensional analysis of the differentiated needs of ski underwear[J]. Journal of Textile Research, 2021, 42 (8): 161-166.
doi: 10.1177/004051757204200306
[2] 刘璟, 王永进. 单板滑雪服穿着评价与需求的调查研究[J]. 北京服装学院学报(自然科学版), 2018, 38(1): 42-49.
LIU Jing, WANG Yongjin. Research on the evaluation and requirements of snowboard jacktets[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2018, 38(1): 42-49.
[3] 王莉, 张冰洁, 王建萍, 等. 基于仿生学的冬季针织运动面料开发与性能评价[J]. 纺织学报, 2021, 42(5):66-72.
WANG Li, ZHANG Bingjie, WANG Jianping, et al. Development and performance evaluation of winter knitted sports fabric based on bionics[J]. Journal of Textile Research, 2021, 42 (5): 66-72.
[4] 丛洪莲, 张永超, 张爱军, 等. 纬编均匀提花针织物仿真结构模型的建立[J]. 纺织学报, 2016, 37(8): 143-148.
CONG Honglian, ZHANG Yongchao, ZHANG Aijun, et al. Simulation structure model of weft knitted flat jacquard fabrics[J]. Journal of Textile Research, 2016, 37(8): 143-148.
[5] GURERA Dev, BHUSHAN Bharat. Movement of air bubbles under various liquids using bioinspired conical surfaces[J]. Journal of Colloid and Interface Science, 2021, 582: 41-50.
doi: 10.1016/j.jcis.2020.08.031
[6] ZHANG Liwen, LIU Guang, CHEN Huawei, et al. Bioinspired unidirectional liquid transport micro-nano structures: a review[J]. Journal of Bionic Engineering, 2021, 18(1): 1-29.
doi: 10.1007/s42235-021-0009-z
[7] 张旭靖, 王立川, 陈雁. 针织内衣织物接触冷暖感的形成机制与影响因素[J]. 纺织学报, 2017, 38(1): 57-60.
ZHANG Xujing, WANG Lichuan, CHEN Yan. Formation mechanism and influence factors of warm-cool feeling of knitted underwear fabrics[J]. Journal of Textile Research, 2017, 38(1): 57-60.
[8] ALESSANDRO Valenza, ANTONINO Bianco, DAVIDE Filingeri. Thermosensory mapping of skin wetness sensitivity across the body of young males and females at rest and following maximal incremental running[J]. The Journal of Physiology, 2019, 597(13): 3315-3332.
doi: 10.1113/JP277928
[9] 孙岑文捷, 倪军, 张昭华, 等. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127.
SUN Cenwenjie, NI Jun, ZHANG Zhaohua, et al. Ventilation design and thermal-wet comfort evaluation of knitted sportswear[J]. Journal of Textile Research, 2020, 41(11): 122-127.
[10] ZHANG Chengchun, ZHENG Yihua, WU Zhengyang, et al. Non-wet kingfisher flying in the rain: the water-repellent mechanism of elastic feathers[J]. Journal of Colloid and Interface Science, 2019, 541: 56-64.
doi: S0021-9797(19)30077-3 pmid: 30682593
[11] JOÃO Bessa, JEFFERSON Souza, LOPES J B, et al. Characterization of thermal and acoustic insulation of chicken feather reinforced composites[J]. Procedia Engineering, 2017, 200: 472-479.
doi: 10.1016/j.proeng.2017.07.066
[12] TAMRAT Tesfaye, BRUCE Sithole, DERESH Ramjugernath, et al. Valorisation of chicken feathers: characterisation of physical properties and morphological structure[J]. Journal of Cleaner Production, 2017, 149: 349-365.
doi: 10.1016/j.jclepro.2017.02.112
[13] DAMIEN Fournet, LINDSEY Ross, THOMAS Voelcker, et al. Body mapping of thermoregulatory and perceptual responses of males and females running in the cold[J]. Journal of Thermal Biology, 2013, 38(6): 339-344.
doi: 10.1016/j.jtherbio.2013.04.005
[14] SMITH C J, HAVENITH G. Body mapping of sweating patterns in athletes: a sex comparison[J]. Medicine and Science in Sports and Exercise, 2012, 44(12): 2350-2361.
doi: 10.1249/MSS.0b013e318267b0c4
[1] ZHANG Heng, ZHEN Qi, LIU Yong, SONG Weimin, LIU Rangtong, ZHANG Yifeng. Air filtration performance and morphological features of polyethylene glycol/polypropylene composite fibrous materials with embedded structure [J]. Journal of Textile Research, 2019, 40(09): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!