Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (08): 48-54.doi: 10.13475/j.fzxb.20210505807

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of silicon nitride fibers by oxygen thermal cross-linking of polysilazane

LI Hailong, CHEN Jianjun(), BAO Zhihao, XIONG Yilian, LIN Wenxin   

  1. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-05-24 Revised:2022-05-06 Online:2022-08-15 Published:2022-08-24
  • Contact: CHEN Jianjun E-mail:chen@zstu.edu.cn

Abstract:

To explore the optimum technology of oxygen thermal cross-linking for polysilazane (PSZ) fibers and the effect of oxygen thermal cross-linking on compositions and structures of PSZ fibers and silicon nitride (Si3N4) fibers, Si3N4 fibers were successfully prepared using methyldichlorosilane and dimethyldichlorosilane as raw materials by ammonolysis polycondensation, thermopolymerization, melt spinning, oxygen thermal cross-linking and pyrolysis. Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and some other measures were utilized to analyze the structure and properties of the samples. After the PSZ fibers cured at 120 ℃ for 12 h, its ceramic yields were higher than that of uncured PSZ fibers by about 10.2%. The Si3N4 fibers with smooth flat surface and without groove cracks and other defects were obtained by pyrolysis of the cured PSZ fibers at 1 400 ℃ for 2 h. Furthermore, a layer of SiO2 crystalline phase was observed on the surface of the Si3N4 fibers after high-temperature oxidation in air at 1 500 ℃ for 2 h. The obtained fibers after oxidation was a typical type of skin-core structure fibers.

Key words: precursor derived method, polysilazane, silicon nitride fiber, oxygen thermal cross-linking

CLC Number: 

  • TB34

Fig.1

Infrared spectra of silazane oligomers, PSZ fiber precursors, cross-linked PSZ fibers and Si3N4 fibers"

Fig.2

XPS full spectra of polysilazane and Si3N4 fibers"

Tab.1

Elements content in PSZ and Si3N4 fibers %"

纤维名称 O1s N1s C1s Si2s Si2p
PSZ纤维 2.79 16.02 38.97 21.01 21.22
Si3N4纤维 17.47 11.50 30.24 19.89 20.89

Fig.3

XPS narrow scan spectra of polysiloxane and Si3N4 fibers"

Fig.4

Apparent morphology of polysilazane fibers treated at different temperatures"

Fig.5

Apparent morphology of polysilazane fibers treated at 120 ℃ for different time"

Fig.6

TG curves of polysilazane fibers before and after thermal oxidation"

Fig.7

SEM images of silicon nitride fiber and high temperature oxidation treated fiber. (a) Si3N4fiber; (b) Si3N4 oxidized at high temperature"

Fig.8

XRD pattern of Si3N4 fibers and high temperature oxidation treated Si3N4 fibers"

[1] HU Xu, SHAO Changwei, WANG Jun, et al. Characterization and high-temperature degradation mechanism of continuous silicon nitride fibers[J]. Journal of Materials Science, 2017, 52(12): 7555-7566.
doi: 10.1007/s10853-017-0988-7
[2] ZHANG Sainan, HUA Yu, WANG Qi, et al. Effects of oxygen on the thermal stability of silicon nitride fibers[J]. Journal of the European Ceramic Society, 2022, 42(6): 2691-2698.
doi: 10.1016/j.jeurceramsoc.2022.01.066
[3] LI Yang, GAO Jiacheng. Preparation of silicon nitride ceramic fibers from polycarbosilane fibers by γ-ray irradiation curing[J]. Materials Letters, 2013, 110: 102-104.
doi: 10.1016/j.matlet.2013.07.127
[4] COLOMBO Paolo, MERA Gabriela, RIEDEL Ralf, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics[J]. J Am Ceram Soc, 2010, 93(7): 1805-1837.
[5] 王浩, 王金龙, 苟燕子. 先驱体转化法制备高性能碳化硼陶瓷材料研究进展[J]. 无机材料学报, 2017, 32(8): 785-791.
WANG Hao, WANG Jinlong, GOU Yanzi. Progress of advanced boron carbide ceramic materials prepared by precursor derived method[J]. Journal of Inorganic Materials, 2017, 32(8): 785-791.
doi: 10.15541/jim20160524
[6] YANG Xuejie, LI Bin, LI Duan, et al. Fabrication and oxidation resistance of silicon nitride fiber reinforced silica matrix wave-transparent composites[J]. Journal of Materials Science and Technology, 2019, 35(12): 21-26.
[7] OKAMURA K, SATO M, HASEGAWA Y. Silicon nitride fibers and silicon oxynitride fibers obtained by the nitridation of polycarbosilane[J]. Ceramics International, 1987, 13(1): 55-61.
doi: 10.1016/0272-8842(87)90038-1
[8] FLORES Octavio, BORDIA Rajendra K, NESTLER Daisy, et al. Ceramic fibers based on SiC and SiCN systems: current research, development, and commercial status[J]. Advanced Engineering Materials, 2014, 16(6): 621-636.
doi: 10.1002/adem.201400069
[9] LEGROW G E, LIM F, LIPOWITZ J, et al. Ceramic fibers from hydridopolysilazane[J]. Journal de Chimie Physique, 1986, 83: 869-873.
doi: 10.1051/jcp/1986830869
[10] 宋永才, 冯春祥, 薛金根. 氮化硅纤维研究进展[J]. 高科技纤维与应用, 2002(2): 6-11.
SONG Yongcai, FENG Chunxiang, XUE Jingen. The progress of research on silicon nitride fiber[J]. Hi-Tech Fiber and Application, 2002 (2): 6-11.
[11] FUNAYAMA Osamu, ARAI Mikiro, TASHIRO Yuji, et al. Tensile strength of silicon nitride fibers produced from perhydropolysilazane[J]. Journal of the Ceramic Society of Japan, 1990, 98(1): 104-107.
doi: 10.2109/jcersj.98.104
[12] 滕雅娣, 孙晓龙, 黄鑫龙, 等. 不同分子量的陶瓷前驱体聚硅氮烷的结构与性能的研究[J]. 功能材料, 2015, 46(9): 9031-9035.
TENG Yadi, SUN Xiaolong, HUANG Xinlong, et al. Research of chemical structures and properties of pre-ceramic polymer polysilazanes with different molecular weight[J]. Journal of Functional Materials, 2015, 46(9): 9031-9035.
[13] 王岭, 宋永才, 许云书, 等. 含乙烯基的聚硅氮烷先驱体纤维的制备[J]. 高分子材料科学与工程, 2000, 7(5): 109-112.
WANG Ling, SONG Yongcai, XU Yunshu, et al. Synthesis of vinyl-containing polysilazane precusors[J]. Polymer Materials Science & Engineering, 2000, 7(5): 109-112.
[14] 兰琳, 夏文丽, 陈剑铭, 等. 聚碳硅烷氮化热解法制备Si3N4纤维[J]. 功能材料, 2013(20): 2981-2984.
LAN Lin, XIA Wenli, CHEN Jianming, et al. Preparation of silicon nitride fibers by pyrolysis nitridation of polycarbosilance[J]. Journal of Functional Materials, 2013 (20): 2981-2984.
[15] QI G J, ZHANG C R, HU H F. Continuous silica fiber reinforced silica composites densified by polymer-derived silicon nitride: mechanical properties and microstructures[J]. Journal of Non-Crystalline Solids, 2006, 352(36): 3794-3798.
doi: 10.1016/j.jnoncrysol.2006.06.015
[16] DONG Xichao, GUO Changqing, LIU Xingyu, et al. Processing, characterization and properties of novel gradient Si3N4/SiC fibers derived from polycarbosilanes[J]. Journal of the European Ceramic Society, 2019, 39(13): 3613-3619.
doi: 10.1016/j.jeurceramsoc.2019.05.028
[17] 卢玲, 冯春祥, 宋永才. 聚硅氮烷纤维的BCl3不熔化处理研究[J]. 宇航材料工艺, 1997(3): 32-35,55.
LU Ling, FENG Chunxiang, SONG Yongcai. Study on the curing of poltyilazane fibers using boron trichloride[J]. Aerospace Materials & Technology, 1997(3): 32-35,55.
[18] 汤明, 丁马太, 苏智明, 等. 聚碳硅烷纤维氧化交联机理的研究[J]. 功能材料, 2012, 43(17): 2332-2337.
TANG Ming, DING Matai, SU Zhiming, et al. Study on the oxidation-curing mechanism of polycarbosilane fibers[J]. Journal of Functional Materials, 2012, 43(17): 2332-2337.
[19] 郑春满, 朱冰, 李效东, 等. 聚碳硅烷纤维的热交联研究[J]. 高分子学报, 2004, 2(2): 246-250.
ZHENG Chunman, ZHU Bing, LI Xiaodong, et al. Study on the thermal-curing of polycarbosilane fibers[J]. Acta Polymerica Sinica, 2004, 2(2): 246-250.
[20] REN Z, GERVAIS C, SINGH G. Preparation and structure of SiOCN fibres derived from cyclic silazane/poly-acrylic acid hybrid precursor[J]. Royal Society Open Science, 2019, 6(10): 19-27.
[21] SONG Y C, ZHAO Y, FENG C X, et al. Synthesis and pyrolysis of polysilazane as the precursor of Si3N4/SiC ceramic[J]. Journal of Materials Science, 1994, 29(21): 5745-5756.
doi: 10.1007/BF00349975
[22] 考可辰. 聚硅氮烷陶瓷先驱体的制备、纺丝及陶瓷化性能研究[D]. 杭州: 浙江理工大学, 2020: 33-35.
KAO Kechen. Research on synthesis, spinning and ceramic properties of polysilazane ceramic precursor[D]. Hangzhou: Zhejiang Sci-Tech University, 2020: 33-35.
[23] LI Xiaohong, XU Zhaofang, CHEN Lu, et al. Thermal oxidation curing polycarbosilane fibers by alternating air and vacuum process[J]. RSC Advances, 2020, 10(44): 26052-26058.
doi: 10.1039/d0ra04888g pmid: 35519766
[24] SCHMACK G, TÄNDLER B, VOGEL R, et al. Biodegradable fibers of poly(L-lactide) produced by high-speed melt spinning and spin drawing[J]. Journal of Applied Polymer Science, 2015, 73(14): 2785-2797.
doi: 10.1002/(SICI)1097-4628(19990929)73:14<2785::AID-APP1>3.0.CO;2-L
[25] CERNY M, GLOGAR P, SUCHARDA Z. Mechanical properties of basalt fiber reinforced composites prepared by partial pyrolysis of a polymer precursor[J]. Journal of Composite Materials, 2009, 43(9): 1109-1120.
doi: 10.1177/0021998308097732
[26] BERNARD S, WEINMANN M, GERSTEl P, et al. Boron-modified polysilazane as a novel single-source precursor for SiBCN ceramic fibers: synthesis, melt-spinning, curing and ceramic conversion[J]. Journal of Materials Chemistry, 2005, 15(2): 289-299.
doi: 10.1039/b408295h
[1] XIE Mengyu, HU Xiaolin, LI Xing, QU Jian'gang. Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose multi-layer composite [J]. Journal of Textile Research, 2022, 43(04): 117-123.
[2] ZHOU Yuanyuan, ZHENG Yuming, WU Xiaoqiong, SHAO Zaidong. Research progress of performance enhancement methods for electrospun nanofiber-based photocatalyst [J]. Journal of Textile Research, 2021, 42(11): 179-186.
[3] CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62.
[4] YIN Juhui, GUO Jing, WANG Yan, CAO Zheng, GUAN Fucheng, LIU Shuxing. Preparation and properties of sodium alginate/krill protein scaffold materials [J]. Journal of Textile Research, 2021, 42(02): 53-59.
[5] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[6] LIU Guojin, SHI Feng, CHEN Xinxiang, ZHANG Guoqing, ZHOU Lan. Preparation of polyurethane/phase change wax functional finishing agents for heat storage and temperature regulation and their applications on cotton fabrics [J]. Journal of Textile Research, 2020, 41(07): 129-134.
[7] WU Heng, JIN Xin, WANG Wenyu, ZHU Zhengtao, LIN Tong, NIU Jiarong. Preparation and piezoelectric properties of polyacrylonitrile/sodium nitrate nanofiber membrane [J]. Journal of Textile Research, 2020, 41(03): 26-32.
[8] CHEN Xu, WU Bingyang, FAN Ying, YANG Musheng. Numerical simulation of low temperature protection process for heat storage fabrics [J]. Journal of Textile Research, 2019, 40(07): 163-168.
[9] HUANG Chengbo, REN Xuehong. Synthesis and properties of antibacterial polyacrylonitrile nanofiber membrane [J]. Journal of Textile Research, 2019, 40(05): 7-11.
[10] . Preparation and controlled release of microcapsules via Layer-by-Layer assembly [J]. Journal of Textile Research, 2015, 36(03): 58-62.
[11] . Preparation and electrical resistivity research of CNFs/ZnO composite nanofiber membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(6): 25-0.
[12] . Preparation and Properties of composite poltethylene glycol∕expanded graphite∕polypropylene phase-change material [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(3): 13-0.
[13] WANG Xiao, YANG Qi-Peng, SHAO Wei, CUI Yong-Zhu, XU Ming-Mei. Preparation and characterization of hydroxyapatite/polyacrylonitrile photografting composite film [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(4): 24-28.
[14] . Preparations and oil absorptivities of polymethacrylate sandwich oil-absorptive materials [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(7): 17-22.
[15] TIAN Tao;WU Jing-hui;HAO Li-mei;LIN Song;YANG Jing-quan;. Research on charge storage properties of polypropylene fiber electret filter [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(6): 25-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!