Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (08): 176-182.doi: 10.13475/j.fzxb.20210506607

• Machinery & Accessories • Previous Articles     Next Articles

Kinematic characteristics of new piezoelectric actuator for yarn gripper in looms

MA Xunming1,2, LI Zhiyi1(), LÜ Guanglei1, CHEN Yongjie1   

  1. 1. School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710600, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an, Shaanxi 710600, China
  • Received:2021-05-25 Revised:2022-04-23 Online:2022-08-15 Published:2022-08-24
  • Contact: LI Zhiyi E-mail:li826850999@126.com

Abstract:

Aiming at the low response frequency and poor consistency of the traditional electromagnetic yarn grippers, a new design of yarn grippers based on piezoelectric technology was proposed and its piezoelectric actuator was analyzed dynamically. The static parameters of the piezoelectric actuator and the parameters affecting the position shift of the piezoelectric actuator were analyzed, and the optimal holding length was obtained. The dynamic model of cantilever piezoelectric actuator was established and the system was simulated by MatLab. The influence of the numerical changes of each parameter on the dynamic characteristics and stability of the system was analyzed. Finally, an experimental platform was built to test the piezoelectric actuator, and the advance of the piezoelectric actuator was verified. The simulation and experimental results show that when the driving voltage is 150 V, the frequency is 10 Hz, the maximum displacement of the piezoelectric actuator end is 1.49 mm, and the response time of the system reaches the maximum displacement is stable at about 1.6 ms. Compared with the electromagnetic yarn grippers, the dynamic performance of the new piezoelectric actuator has been significantly improved.

Key words: yarn gripper, piezoelectric actuator, kinetic equation, kinematic characteristic, loom

CLC Number: 

  • TH132

Fig.1

Schematic diagram of piezoelectric yarn gripper"

Fig.2

Diagram of piezoelectric plate micro-displacement along axis"

Fig.3

Schematic diagram of cantilever piezoelectric bending plate"

Fig.4

Relationship between non-clamping length and displacement"

Fig.5

Relationship between thickness and displacement of each layer"

Fig.6

Dynamic model of piezoelectric bending plate"

Fig.7

Influence of damping ratio on system"

Fig.8

Influence of equivalent stiffness on system. (a)Original system; (b)Local enlarged view"

Fig.9

Influence of equivalent mass on system. (a) Original system. (b) Local enlarged view"

Fig.10

Pole of zero"

Fig.11

Bode diagram. (a)Phase; (b)Amplitude"

Fig.12

Experimental test platform"

Fig.13

Test results"

Fig.14

Data analysis results"

[1] 洪海沧, 李雪清. 近期国内外织造技术的进步与发展趋势[J]. 纺织导报, 2019(7):71-74.
HONG Haicang, LI Xueqing. Recent progress and development trend of weaving technology at home and abroad[J]. China Textile Leader, 2019(7):71-74.
[2] 马磊, 王新力. 从ITMA 2019看织造装备的技术进展[J]. 纺织导报, 2019(12):18-29.
MA Lei, MA Lei, WANG Xinli. Technological progress of weaving equipment from ITMA 2019[J]. China Textile Leader, 2019(12):18-29.
[3] 陈永当, 赵诚诚, 殷俊清, 等. 喷气织机新型引纬片结构设计及引纬流场分析[J]. 纺织高校基础科学学报, 2020, 33(4):59-63.
CHEN Yongdang, ZHAO Chengcheng, YIN Junqing, et al. Structure design and flow field analysis of new weft inserting vane on air jet loom[J]. Journal of Basic Science of Textile Universities, 2020, 33(4):59-63.
[4] 史飞虎. 基于MCU的储纬器控制装置的设计与应用[J]. 上海纺织科技, 2017, 45(2):53-54,61.
SHI Feihu. Design and application of the control device of weft catcher based on MCU[J]. Shanghai Textile Science & Technology, 2017, 45(2):53-54,61.
[5] 方远, 刘树勇, 杨理华, 等. 压电陶瓷片迟滞补偿建模及悬臂梁主动控制研究[J]. 噪声与振动控制, 2018, 38(2):25-29.
FANG Yuan, LIU Shuyong, YANG Lihua, et al. Hysteresis compensation modeling of piezoelectric ceramic sheet and active control of cantilever beam[J]. Noise and Vibration Control, 2018, 38(2):25-29.
[6] GOLDFARB M, CELANOVIC N. A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators[J]. Journal of Dynamic Systems Measurement & Control, 1997, 119(3):478-485.
[7] 王生健, 周伟, 宁乃永. LD-1型喷气织机挡纱销的试制[J]. 纺织科学研究, 2003(2):39-42,51.
WANG Shengjian, ZHOU Wei, NING Naiyong. The trial production of LD-1 type air jet loom yarn stopper[J]. Textile Science Research, 2003(2):39-42,51.
[8] 张昌松, 雷春耀, 高峰. 基于有限元的压电双晶片驱动模拟分析[J]. 陕西科技大学学报(自然科学版), 2014, 32(2):134-137.
ZHANG Changsong, LEI Chunyao, GAO Feng. Driving simulation of the piezoelectric bimorph based on the finite element[J]. Journal of Shaanxi University of Science (Natural Science), 2014, 32(2):134-137.
[9] WANG Qingming, CROSS L Eric. Performance analysis of piezoelectric cantilever bending actuators[J]. Ferroelectrics, 1998, 215(1) :187-213.
doi: 10.1080/00150199808229562
[10] 黄燕. 压电先导型气动阀位置比例控制系统研究[D]. 上海: 上海交通大学, 2017:9-10.
HUANG Yan. Research on position proportional control system of piezoelectric pilot pneumatic valve[D]. Shanghai: Shanghai Jiao Tong University, 2017:9-10.
[11] GOLDFARB M, CELANOVIC N. Modeling piezoelectric stack actuators for control of micromanipulation[J]. IEEE Control Systems, 1997, 17(3):69-79.
doi: 10.1109/37.588158
[12] 程光明, 李新辉, 张海滨, 等. 悬臂式压电双晶片振子夹持长度变化对其动态特性的影响[J]. 光学精密工程, 2014, 22(5):1296-1303.
CHENG Guangming, LI Xinhui, ZHANG Haibin, et al. Effect of clamping length variation on dynamic characteristics of cantilever piezoelectric twin wafer vibrator[J]. Optics and Precision Engineering, 2014, 22(5):1296-1303.
doi: 10.3788/OPE.20142205.1296
[13] 张宏壮. 压电双晶片型二自由度惯性冲击式精密驱动器理论与实验研究[D]. 长春: 吉林大学, 2006:54-55.
ZHANG Hongzhuang. Theoretical and experimental study on piezoelectric dual chip type two DOF inertial impactor precision actuator[D]. Changchun: Jilin University, 2006:54-55.
[14] 张宏壮, 程光明, 曾平, 等. 压电双晶片型2自由度精密驱动器的动态特性[J]. 机械工程学报, 2007(2):87-91.
ZHANG Hongzhuang, CHENG Guangming, ZENG Ping, et al. Dynamic characteristics of 2-DOF piezoelectric dual chip precision actuator[J]. Chinese Journal of Mechanical Engineering, 2007(2):87-91.
[15] 位德彬, 马训鸣, 刘玮航. 喷气织机高频喷射阀压电驱动器的动态特性[J]. 纺织高校基础科学学报, 2020, 33(3):24-30.
WEI Debin, MA Xunming, LIU Weihang. Dynamic characteristics of high frequency jet valve piezoelectric actuator in air jet loom[J]. Journal of Basic Science of Textile Universities, 2020, 33(3):24-30.
[16] 陈立文, 周庆生. 挡纱销质量检测分析测试仪的设计和应用[J]. 丝绸, 2007(5):43-45.
CHEN Liwen, ZHOU Qingsheng. Design and application of tester for quality inspection and analysis of yarn stopper pin[J]. Journal of Silk, 2007(5):43-45.
[1] CHEN Xiaoming, LI Jiao, ZHANG Yifan, XIE Junbo, YAO Tianlei, CHEN Li. Design of loom shedding control system for interlayer angle interlocking fabric based on use of host computer [J]. Journal of Textile Research, 2022, 43(04): 174-179.
[2] XIE Kaifang, LUO Fengxiang, BAO Xinjun, ZHOU Hengshu, XU Guangbiao. Preparation and performance of composite coated polyester harness cord with high wearability [J]. Journal of Textile Research, 2022, 43(03): 123-131.
[3] ZHOU Haobang, SHEN Min, YU Lianqing, XIAO Shichao. Effect of structural parameter of relay nozzles on characteristics of flow field in profiled reed of air jet loom [J]. Journal of Textile Research, 2021, 42(11): 166-172.
[4] ZHANG Ziyu, XU Yang, SHENG Xiaowei, XIE Guosheng. Suppression of high frequency noise of tufted carpet loom based on statistical energy analysis [J]. Journal of Textile Research, 2021, 42(03): 169-174.
[5] LI Bo, HU Kai, JIN Guoguang, WEI Zhan, CHANG Boyan. Research on dynamic characteristics of spatial-linkage weft insertion mechanism considering flexible hinge clearance [J]. Journal of Textile Research, 2021, 42(01): 145-153.
[6] YU Chennan, JIA Jiangming, CHEN Zhiwei, CHEN Jianneng, CHEN Jiayou, LU Wentao. Reverse modeling and kinematics simulation of new weft insertion mechanism for rapier looms [J]. Journal of Textile Research, 2021, 42(01): 154-161.
[7] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[8] ZHANG Xiaoxia, LIU Fengkun, MAI Wei, MA Chongqi. Prediction of loom efficiency based on BP neural network and its improved algorithm [J]. Journal of Textile Research, 2020, 41(08): 121-127.
[9] CHEN Shaoyong, XU Yang, SHENG Xiaowei, ZHANG Ziyu. Active noise control for tufted carpet equipment based on filtered least mean square algorithm [J]. Journal of Textile Research, 2020, 41(07): 88-92.
[10] WEI Zhan, JIN Guoguang, LI Bo, SONG Yanyan, LU Chunhui. Modeling and simulation of contact force generated by beating-up cam in rapier looms [J]. Journal of Textile Research, 2020, 41(03): 154-159.
[11] GAO Zhigang, LIU Leilei, WANG Yong, XU Yang. Automation improvement design of weaving curtain loom [J]. Journal of Textile Research, 2019, 40(12): 119-126.
[12] LI Sihu, SHEN Min, BAI Cong, CHEN Liang. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field [J]. Journal of Textile Research, 2019, 40(11): 161-167.
[13] ZHOU Xiangqin, GU Yeqin, WU Zhenyu. Parameter characteristics of weft insertion mechanism of rapier loom capable of simply adjusting reed width [J]. Journal of Textile Research, 2019, 40(09): 173-179.
[14] GUANG Shaobo, JIN Yuzhen, ZHU Xiaochen. Analysis on airflow field in extended nozzle of air jet loom [J]. Journal of Textile Research, 2019, 40(04): 135-139.
[15] XU Yang, LI Ang'ang, SHENG Xiaowei, SUN Zhijun. Noise source identification of high-speed motion mechanism of textile equipment based on near-field acoustic holography method [J]. Journal of Textile Research, 2019, 40(04): 129-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!