Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (09): 1-9.doi: 10.13475/j.fzxb.20210506809

• Invited Column:Intelligent fiber and products •     Next Articles

Electroactive fibrous materials for intelligent wearable textiles

FANG Jian1,2(), REN Song1,2, ZHANG Chuanxiong3, CHEN Qian1,2, XIA Guangbo1,2, GE Can1,2   

  1. 1. College of textiles and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
    3. textiles Industry Science and Technology Development Center, Beijing 100020, China
  • Received:2021-05-25 Revised:2021-06-29 Online:2021-09-15 Published:2021-09-27

Abstract:

To foster the development of smart fibrous materials and intelligent wearable textiles, a detailed overview on electroactive fibrous materials for intelligent wearable textiles was carried in this study. This paper summarized the state-of-the-art of fiber-based and fabric-based intelligent wearable textiles in recent years. Definitions, common preparation methods, development process, and the latest research progress in electroactive fibers were examined and their properties and application fields were systematically classified and discussed from the perspectives of strain sensing, electrochromic, intelligent temperature regulation, energy harvesting and storage, and so on. Future development and problems hindering the use of electroactive fibrous materials in intelligent wearable textiles were highlighted. The future development direction was pointed out for theoretical and technical references in the hope to promote the wide range of applications of electroactive fibrous materials in future intelligent wearable textiles.

Key words: intelligent wearable textiles, electroactive fibrous material, sensor, electrochromism, intelligent temperature regulation, energy harvesting and storage

CLC Number: 

  • TS101.3

Fig.1

Functions and applications of intelligent wearable textile"

[1] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(1):1-9.
YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns[J]. Journal of Textile Research, 2021, 42(1):1-9.
doi: 10.1177/004051757204200101
[2] CHO Y, PAK S, LEE Y G, et al. Hybrid smart fiber with spontaneous self-charging mechanism for sustainable wearable electronics[J]. Advanced Functional Materials, 2020, 30(13):1908479.
doi: 10.1002/adfm.v30.13
[3] 孙嘉琪, 于晓坤, 王克毅. 柔性织物传感器研究现状与发展[J]. 功能材料与器件学报, 2020, 26(1):16-23.
SUN Jiaqi, YU Xiaokun, WANG Keyi. Research status and development of flexible fabric sensor[J]. Journal of Functional materials and devices, 2020, 26(1):16-23.
[4] 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12):157-165.
WANG Jilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41(12):157-165.
[5] MA W, ZHANG Y, PAN S, et al. Smart fibers for energy conversion and storage[J]. Chemical Society Reviews, 2021, 50(12):7009-7061.
doi: 10.1039/D0CS01603A
[6] GAO Y, XIE C, ZHENG Z. Textile composite electrodes for flexible batteries and supercapacitors: opportunities and challenges[J]. Advanced Energy Materials, 2020, 11:2002838.
doi: 10.1002/aenm.v11.3
[7] 朱亚楠, 逄增媛, 葛明桥. 金属银导电纤维的制备及性能研究[J]. 化工新型材料, 2020, 48(1):102-105.
ZHU Yanan, PANG Zengyuan, GE Mingqiao. Preparation and performance analysis of silver conductive fiber[J]. New Chemical Materials, 2020, 48(1):102-105.
[8] 潘俊杰. 纤维基可拉伸柔性器件的制备及其性能研究[D]. 武汉: 武汉纺织大学, 2020:2-24.
PAN Junjie. Research on the fabrication and properties of fiber based stretchable flexible devices[D]. Wuhan: Wuhan Textile University, 2020:2-24.
[9] LEE S H, PARK J H, KIM S M. Synjournal, property, and application of carbon nanotube fiber[J]. Journal of the Korean Ceramic Society, 2021, 58(2):148-159.
doi: 10.1007/s43207-020-00106-0
[10] 庞雅莉, 孟佳意, 李昕, 等. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(9):1-7.
PANG Yali, MENG Jiayi, LI Xin, et al. Preparation of graphene fibers by wet spinning and fiber characterization[J]. Journal of Textile Research, 2020, 41(9):1-7.
doi: 10.1177/004051757104100101
[11] 陆龙喜, 陆烨, 李晔, 等. 新型嵌银纤维织物的抗菌性能研究[J]. 中国消毒学杂志, 2017, 34(3):214-217.
LU Longxi, LU Ye, LI Ye, et al. Study on antimicrobial property on a new fiber embedded with silver[J]. Chinese Journal of Disinfection, 2017, 34(3):214-217.
[12] 刘旭华, 苗锦雷, 曲丽君, 等. 用于可穿戴智能纺织品的复合导电纤维研究进展[J]. 复合材料学报, 2021, 38(1):67-83.
LIU Xuhua, MIAO Jinlei, QU Lijun, et al. Research progress of composite conductive fiber in wearable intelligent textiles[J]. Acta Materiae Compositae Sinica, 2021, 38(1):67-83.
[13] LUO M, LI M, JIANG S, et al. Supported growth of inorganic-organic nanoflowers on 3D hierarchically porous nanofibrous membrane for enhanced enzymatic water treatment[J]. Journal of Hazardous Materials, 2020, 381:120947.
doi: 10.1016/j.jhazmat.2019.120947
[14] WANG Y, YOKOTA T, SOMEYA T. Electrospun nanofiber-based soft electronics[J]. NPG Asia Materials, 2021(13):22.
[15] FANG J, NIU H, WANG H, et al. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs[J]. Energy & Environmental Science, 2013, 6(7):2196-2202.
[16] LANG C, FANG J, SHAO H, et al. High-sensitivity acoustic sensors from nanofibre webs[J]. Nature Communications, 2016, 7(1):11108.
doi: 10.1038/ncomms11108
[17] LANG C, FANG J, SHAO H, et al. High-output acoustoelectric power generators from poly(vinylidenefluoride-co-trifluoroethylene) electrospun nano-nonwovens[J]. Nano Energy, 2017, 35:146-153.
doi: 10.1016/j.nanoen.2017.03.038
[18] WANG Yalong, HAO Ji, HUANG Zhenqi, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring[J]. Carbon, 2018, 126:360-71.
doi: 10.1016/j.carbon.2017.10.034
[19] ZHANG X, LIN H, SHANG H, et al. Recent advances in functional fiber electronics[J]. SusMat, 2021, 1(1):105-126.
doi: 10.1002/sus2.v1.1
[20] LI Y, HUANG P, ZHU W, et al. Flexible wire-shaped strain sensor from cotton thread for human health and motion detection[J]. Scientific Reports, 2017, 7:45013.
doi: 10.1038/srep45013
[21] SONG Y X, XU W M, RONG M Z, et al. A sunlight self-healable fibrous flexible pressure sensor based on electrically conductive composite wool yarns[J]. Express Polymer Letters, 2020, 14(11):1089-1104.
doi: 10.3144/expresspolymlett.2020.88
[22] RUN W, NAN J, JIAN S, et al. A bi-sheath fiber sensor for giant tensile and torsional displacements[J]. Advanced Functional Materials, 2017, 27(35):1702134.
doi: 10.1002/adfm.v27.35
[23] REZAEI A, CUTHBERT T J, GHOLAMI M, et al. Application-based production and testing of a core-sheath fiber strain sensor for wearable electronics: feasibility study of using the sensors in measuring tri-axial trunk motion angles[J]. Sensors, 2019, 19(19):4288.
doi: 10.3390/s19194288
[24] QIN Y, WANG X, WANG Z. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180):809-13.
doi: 10.1038/nature06601
[25] LI Z, WANG Z L. Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor[J]. Advanced Materials, 2011, 23(1):84-89.
doi: 10.1002/adma.v23.1
[26] EGUSA S, WANG Z, CHOCAT N, et al. Multimaterial piezoelectric fibres[J]. Nature Materials, 2010, 9(8):643-8.
doi: 10.1038/nmat2792
[27] DU Y, FU C, GAO Y, et al. Carbon fibers/ZnO nanowires hybrid nanogenerator based on an insulating interface barrier[J]. RSC Advances, 2017, 7(35):21452-21458.
doi: 10.1039/C7RA02491F
[28] LU Z, SUO B, CHEN S, et al. A high-reliability kevlar fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection[J]. Advanced Functional Materials, 2015, 25(36):5794-8.
doi: 10.1002/adfm.201502646
[29] DIAS T, MONARAGALA R. Development and analysis of novel electroluminescent yarns and fabrics for localized automotive interior illumination[J]. Textile Research Journal, 2012, 82(11):1164-1176.
doi: 10.1177/0040517511420763
[30] KONG B K, KIM D H, KIM T W. Significant enhancement of out-coupling efficiency for yarn-based organic light-emitting devices with an organic scattering layer[J]. Nano Energy, 2020, 70:104503.
doi: 10.1016/j.nanoen.2020.104503
[31] FAN H, LI K, LIU X, et al. Continuously processed, long electrochromic fibers with multi-environmental stability[J]. Acs Applied Materials & Interfaces, 2020, 12(25):28451-28460.
[32] SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849):240-245.
doi: 10.1038/s41586-021-03295-8
[33] MAO J, CHEN G, REN Z. Thermoelectric cooling materials[J]. Nature Materials, 2021, 20(4):454-461.
doi: 10.1038/s41563-020-00852-w
[34] RUN H, YIDA L, SUNMI S, et al. Emerging materials and strategies for personal thermal management[J]. Advanced Energy Materials, 2020, 10(17):1903921.
doi: 10.1002/aenm.v10.17
[35] KANAHASHI K, JIANG P, TAKENOBU T. 2D materials for large-area flexible thermoelectric devices[J]. Advanced Energy Materials, 2020, 10(11):1902842.
doi: 10.1002/aenm.v10.11
[36] TING Z, KAIWEI L, JING Z, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers[J]. Nano Energy, 2017, 41:35-42.
doi: 10.1016/j.nanoen.2017.09.019
[37] HONG S, GU Y, SEO J K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science Advances, 2019.DOI: 10.1126/sciadv.aaw0536.
doi: 10.1126/sciadv.aaw0536
[38] XIAO B C, LIN L Y. Tuning electrolyte configuration and composition for fiber-shaped dye-sensitized solar cell with poly(vinylidene fluoride-co-hexafluoropropylene) gel electrolyte[J]. Journal of Colloid and Interface Science, 2020, 571:126-133.
doi: 10.1016/j.jcis.2020.03.025
[39] NANNAN Z, JUN C, YI H, et al. A wearable all-solid photovoltaic textile[J]. Advanced Materials, 2016, 28(2):263-9.
doi: 10.1002/adma.201504137
[40] SANGIORGI N, SANGIORGI A, DESSI A, et al. Improving the efficiency of thin-film fiber-shaped dye-sensitized solar cells by using organic sensitizers[J]. Solar Energy Materials and Solar Cells, 2020, 204:110209.
doi: 10.1016/j.solmat.2019.110209
[41] KIM J H, HONG S K, YOO S J, et al. Pt-free, cost-effective and efficient counter electrode with carbon nanotube yarn for solid-state fiber dye-sensitized solar cells[J]. Dyes and Pigments, 2021, 185:108855.
doi: 10.1016/j.dyepig.2020.108855
[42] LI Y, WANG G, AKBARI-SAATLU M, et al. Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art[J]. Frontiers in Materials, 2021.DOI: 10.3389/fmats.2021.611078.
doi: 10.3389/fmats.2021.611078
[43] TAN G, ZHAO L D, KANATZIDIS M G. Rationally designing high-performance bulk thermoelectric materials[J]. Chemical Reviews, 2016, 116(19):12123-12149.
doi: 10.1021/acs.chemrev.6b00255
[44] JIN L, SUN T, ZHAO W, et al. Durable and washable carbon nanotube-based fibers toward wearable thermoelectric generators application[J]. Journal of Power Sources, 2021, 496:229838.
doi: 10.1016/j.jpowsour.2021.229838
[45] XU H, GUO Y, WU B, et al. Highly integrable thermoelectric fiber[J]. ACS Applied Materials & Interfaces, 2020, 12(29):33297-33304.
[46] ZHENG Y, ZHANG Q, JIN W, et al. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics[J]. Journal of Materials Chemistry A, 2020, 8(6):2984-2994.
doi: 10.1039/C9TA12494B
[47] CHEN H, ZHOU L, FANG Z, et al. Piezoelectric nanogenerator based on in situ growth all-inorganic CsPbBr3 perovskite nanocrystals in PVDF fibers with long-term stability[J]. Advanced Functional Materials, 2021, 31(19):2011073.
doi: 10.1002/adfm.v31.19
[48] KIM J H, KIM B, KIM S W, et al. High-performance coaxial piezoelectric energy generator (C-PEG) yarn of Cu/PVDF-TrFE/PDMS/Nylon/Ag[J]. Nanotechnology, 2021, 32(14):145401.
doi: 10.1088/1361-6528/abd57e
[49] KIM H S, PARK I K. Enhanced output power from triboelectric nanogenerators based on electrospun Eu-doped polyvinylidene fluoride nanofibers[J]. Journal of Physics and Chemistry of Solids, 2018, 117:188-193.
doi: 10.1016/j.jpcs.2018.02.045
[50] DONG K, PENG X, AN J, et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing[J]. Nature Communications, 2020, 11(1):2868.
doi: 10.1038/s41467-020-16642-6
[51] CHEN L, CHEN C, JIN L, et al. Stretchable negative Poisson's ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor[J]. Energy and Environmental Science, 2021, 14(2):955-964.
doi: 10.1039/D0EE02777D
[52] SONG P, XI C, PREMLATHA S, et al. Sword/scabbard-shaped asymmetric all-solid-state supercapacitors based on PPy-MWCNTs-silk and hollow graphene tube for wearable applications[J]. Chemical Engineering Journal, 2021, 411:397-409.
[53] ZANG X, LI L, MENG J, et al. Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control[J]. Journal of Materials Science and Technology, 2021, 74:52-59.
doi: 10.1016/j.jmst.2020.10.003
[54] WANG Y, CHEN C, XIE H, et al. 3D-printed all-fiber li-ion battery toward wearable energy storage[J]. Advanced Functional Materials, 2017, 27(43):1703140.
doi: 10.1002/adfm.v27.43
[1] RONG Kai, FAN Wei, WANG Qi, ZHANG Cong, YU Yang. Application progress of two-dimensional transitional metal carbon/nitrogen compound composite in field of intelligent wearable textiles [J]. Journal of Textile Research, 2021, 42(09): 10-16.
[2] ZHENG Baoping, JIANG Gaoming, XIA Fenglin, ZHANG Aijun. Design of dynamic tension compensation system for warp knitting let-off based on model predictions [J]. Journal of Textile Research, 2021, 42(09): 163-169.
[3] CHEN Zujiao, ZHANG Rui, ZHUO Wenwen, ZHANG Longlin, ZHOU Li. Research progress in wearable plantar pressure monitoring system [J]. Journal of Textile Research, 2021, 42(09): 31-38.
[4] WAN Zhenkai, JIA Minrui, BAO Weichen. Optimal configuration of embedded position and number of carbon nanotube yarns in 3-D braided composites [J]. Journal of Textile Research, 2021, 42(09): 76-82.
[5] YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68.
[6] DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56.
[7] TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers [J]. Journal of Textile Research, 2021, 42(05): 168-177.
[8] XIAO Yuan, LI Hongying, LI Qian, ZHANG Wei, YANG Pengcheng. Preparation of flexible sensor with composite dielectric layer of cotton fabric/polydimethylsiloxane [J]. Journal of Textile Research, 2021, 42(05): 79-83.
[9] ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45.
[10] ZHOU Xinru, ZHOU Xiaoya, MA Yongjian, HU Chengye, ZHAO Xiaoman, HONG Jianhan, HAN Xiao. Preparation and pressure sensitivity of conductive polyaniline/polyurethane foam [J]. Journal of Textile Research, 2021, 42(04): 62-68.
[11] ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126.
[12] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49.
[13] YU Jia, XIN Binjie, ZHUO Tingting, ZHOU Xi. Preparation and characterization of Cu/polypyrrole-coated wool fabrics for high electrical conductivity [J]. Journal of Textile Research, 2021, 42(01): 112-117.
[14] MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58.
[15] WANG Jilong, LIU Yan, JING Yuanyuan, XU Qingli, QIAN Xiangyu, ZHANG Yihong, ZHANG Kun. Advances in fiber-based wearable electronic devices [J]. Journal of Textile Research, 2020, 41(12): 157-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!