Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (09): 1-9.doi: 10.13475/j.fzxb.20210506809
• Invited Column:Intelligent fiber and products • Next Articles
FANG Jian1,2(), REN Song1,2, ZHANG Chuanxiong3, CHEN Qian1,2, XIA Guangbo1,2, GE Can1,2
CLC Number:
[1] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(1):1-9. |
YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns[J]. Journal of Textile Research, 2021, 42(1):1-9.
doi: 10.1177/004051757204200101 |
|
[2] |
CHO Y, PAK S, LEE Y G, et al. Hybrid smart fiber with spontaneous self-charging mechanism for sustainable wearable electronics[J]. Advanced Functional Materials, 2020, 30(13):1908479.
doi: 10.1002/adfm.v30.13 |
[3] | 孙嘉琪, 于晓坤, 王克毅. 柔性织物传感器研究现状与发展[J]. 功能材料与器件学报, 2020, 26(1):16-23. |
SUN Jiaqi, YU Xiaokun, WANG Keyi. Research status and development of flexible fabric sensor[J]. Journal of Functional materials and devices, 2020, 26(1):16-23. | |
[4] | 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12):157-165. |
WANG Jilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41(12):157-165. | |
[5] |
MA W, ZHANG Y, PAN S, et al. Smart fibers for energy conversion and storage[J]. Chemical Society Reviews, 2021, 50(12):7009-7061.
doi: 10.1039/D0CS01603A |
[6] |
GAO Y, XIE C, ZHENG Z. Textile composite electrodes for flexible batteries and supercapacitors: opportunities and challenges[J]. Advanced Energy Materials, 2020, 11:2002838.
doi: 10.1002/aenm.v11.3 |
[7] | 朱亚楠, 逄增媛, 葛明桥. 金属银导电纤维的制备及性能研究[J]. 化工新型材料, 2020, 48(1):102-105. |
ZHU Yanan, PANG Zengyuan, GE Mingqiao. Preparation and performance analysis of silver conductive fiber[J]. New Chemical Materials, 2020, 48(1):102-105. | |
[8] | 潘俊杰. 纤维基可拉伸柔性器件的制备及其性能研究[D]. 武汉: 武汉纺织大学, 2020:2-24. |
PAN Junjie. Research on the fabrication and properties of fiber based stretchable flexible devices[D]. Wuhan: Wuhan Textile University, 2020:2-24. | |
[9] |
LEE S H, PARK J H, KIM S M. Synjournal, property, and application of carbon nanotube fiber[J]. Journal of the Korean Ceramic Society, 2021, 58(2):148-159.
doi: 10.1007/s43207-020-00106-0 |
[10] | 庞雅莉, 孟佳意, 李昕, 等. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(9):1-7. |
PANG Yali, MENG Jiayi, LI Xin, et al. Preparation of graphene fibers by wet spinning and fiber characterization[J]. Journal of Textile Research, 2020, 41(9):1-7.
doi: 10.1177/004051757104100101 |
|
[11] | 陆龙喜, 陆烨, 李晔, 等. 新型嵌银纤维织物的抗菌性能研究[J]. 中国消毒学杂志, 2017, 34(3):214-217. |
LU Longxi, LU Ye, LI Ye, et al. Study on antimicrobial property on a new fiber embedded with silver[J]. Chinese Journal of Disinfection, 2017, 34(3):214-217. | |
[12] | 刘旭华, 苗锦雷, 曲丽君, 等. 用于可穿戴智能纺织品的复合导电纤维研究进展[J]. 复合材料学报, 2021, 38(1):67-83. |
LIU Xuhua, MIAO Jinlei, QU Lijun, et al. Research progress of composite conductive fiber in wearable intelligent textiles[J]. Acta Materiae Compositae Sinica, 2021, 38(1):67-83. | |
[13] |
LUO M, LI M, JIANG S, et al. Supported growth of inorganic-organic nanoflowers on 3D hierarchically porous nanofibrous membrane for enhanced enzymatic water treatment[J]. Journal of Hazardous Materials, 2020, 381:120947.
doi: 10.1016/j.jhazmat.2019.120947 |
[14] | WANG Y, YOKOTA T, SOMEYA T. Electrospun nanofiber-based soft electronics[J]. NPG Asia Materials, 2021(13):22. |
[15] | FANG J, NIU H, WANG H, et al. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs[J]. Energy & Environmental Science, 2013, 6(7):2196-2202. |
[16] |
LANG C, FANG J, SHAO H, et al. High-sensitivity acoustic sensors from nanofibre webs[J]. Nature Communications, 2016, 7(1):11108.
doi: 10.1038/ncomms11108 |
[17] |
LANG C, FANG J, SHAO H, et al. High-output acoustoelectric power generators from poly(vinylidenefluoride-co-trifluoroethylene) electrospun nano-nonwovens[J]. Nano Energy, 2017, 35:146-153.
doi: 10.1016/j.nanoen.2017.03.038 |
[18] |
WANG Yalong, HAO Ji, HUANG Zhenqi, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring[J]. Carbon, 2018, 126:360-71.
doi: 10.1016/j.carbon.2017.10.034 |
[19] |
ZHANG X, LIN H, SHANG H, et al. Recent advances in functional fiber electronics[J]. SusMat, 2021, 1(1):105-126.
doi: 10.1002/sus2.v1.1 |
[20] |
LI Y, HUANG P, ZHU W, et al. Flexible wire-shaped strain sensor from cotton thread for human health and motion detection[J]. Scientific Reports, 2017, 7:45013.
doi: 10.1038/srep45013 |
[21] |
SONG Y X, XU W M, RONG M Z, et al. A sunlight self-healable fibrous flexible pressure sensor based on electrically conductive composite wool yarns[J]. Express Polymer Letters, 2020, 14(11):1089-1104.
doi: 10.3144/expresspolymlett.2020.88 |
[22] |
RUN W, NAN J, JIAN S, et al. A bi-sheath fiber sensor for giant tensile and torsional displacements[J]. Advanced Functional Materials, 2017, 27(35):1702134.
doi: 10.1002/adfm.v27.35 |
[23] |
REZAEI A, CUTHBERT T J, GHOLAMI M, et al. Application-based production and testing of a core-sheath fiber strain sensor for wearable electronics: feasibility study of using the sensors in measuring tri-axial trunk motion angles[J]. Sensors, 2019, 19(19):4288.
doi: 10.3390/s19194288 |
[24] |
QIN Y, WANG X, WANG Z. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180):809-13.
doi: 10.1038/nature06601 |
[25] |
LI Z, WANG Z L. Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor[J]. Advanced Materials, 2011, 23(1):84-89.
doi: 10.1002/adma.v23.1 |
[26] |
EGUSA S, WANG Z, CHOCAT N, et al. Multimaterial piezoelectric fibres[J]. Nature Materials, 2010, 9(8):643-8.
doi: 10.1038/nmat2792 |
[27] |
DU Y, FU C, GAO Y, et al. Carbon fibers/ZnO nanowires hybrid nanogenerator based on an insulating interface barrier[J]. RSC Advances, 2017, 7(35):21452-21458.
doi: 10.1039/C7RA02491F |
[28] |
LU Z, SUO B, CHEN S, et al. A high-reliability kevlar fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection[J]. Advanced Functional Materials, 2015, 25(36):5794-8.
doi: 10.1002/adfm.201502646 |
[29] |
DIAS T, MONARAGALA R. Development and analysis of novel electroluminescent yarns and fabrics for localized automotive interior illumination[J]. Textile Research Journal, 2012, 82(11):1164-1176.
doi: 10.1177/0040517511420763 |
[30] |
KONG B K, KIM D H, KIM T W. Significant enhancement of out-coupling efficiency for yarn-based organic light-emitting devices with an organic scattering layer[J]. Nano Energy, 2020, 70:104503.
doi: 10.1016/j.nanoen.2020.104503 |
[31] | FAN H, LI K, LIU X, et al. Continuously processed, long electrochromic fibers with multi-environmental stability[J]. Acs Applied Materials & Interfaces, 2020, 12(25):28451-28460. |
[32] |
SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849):240-245.
doi: 10.1038/s41586-021-03295-8 |
[33] |
MAO J, CHEN G, REN Z. Thermoelectric cooling materials[J]. Nature Materials, 2021, 20(4):454-461.
doi: 10.1038/s41563-020-00852-w |
[34] |
RUN H, YIDA L, SUNMI S, et al. Emerging materials and strategies for personal thermal management[J]. Advanced Energy Materials, 2020, 10(17):1903921.
doi: 10.1002/aenm.v10.17 |
[35] |
KANAHASHI K, JIANG P, TAKENOBU T. 2D materials for large-area flexible thermoelectric devices[J]. Advanced Energy Materials, 2020, 10(11):1902842.
doi: 10.1002/aenm.v10.11 |
[36] |
TING Z, KAIWEI L, JING Z, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers[J]. Nano Energy, 2017, 41:35-42.
doi: 10.1016/j.nanoen.2017.09.019 |
[37] |
HONG S, GU Y, SEO J K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science Advances, 2019.DOI: 10.1126/sciadv.aaw0536.
doi: 10.1126/sciadv.aaw0536 |
[38] |
XIAO B C, LIN L Y. Tuning electrolyte configuration and composition for fiber-shaped dye-sensitized solar cell with poly(vinylidene fluoride-co-hexafluoropropylene) gel electrolyte[J]. Journal of Colloid and Interface Science, 2020, 571:126-133.
doi: 10.1016/j.jcis.2020.03.025 |
[39] |
NANNAN Z, JUN C, YI H, et al. A wearable all-solid photovoltaic textile[J]. Advanced Materials, 2016, 28(2):263-9.
doi: 10.1002/adma.201504137 |
[40] |
SANGIORGI N, SANGIORGI A, DESSI A, et al. Improving the efficiency of thin-film fiber-shaped dye-sensitized solar cells by using organic sensitizers[J]. Solar Energy Materials and Solar Cells, 2020, 204:110209.
doi: 10.1016/j.solmat.2019.110209 |
[41] |
KIM J H, HONG S K, YOO S J, et al. Pt-free, cost-effective and efficient counter electrode with carbon nanotube yarn for solid-state fiber dye-sensitized solar cells[J]. Dyes and Pigments, 2021, 185:108855.
doi: 10.1016/j.dyepig.2020.108855 |
[42] |
LI Y, WANG G, AKBARI-SAATLU M, et al. Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art[J]. Frontiers in Materials, 2021.DOI: 10.3389/fmats.2021.611078.
doi: 10.3389/fmats.2021.611078 |
[43] |
TAN G, ZHAO L D, KANATZIDIS M G. Rationally designing high-performance bulk thermoelectric materials[J]. Chemical Reviews, 2016, 116(19):12123-12149.
doi: 10.1021/acs.chemrev.6b00255 |
[44] |
JIN L, SUN T, ZHAO W, et al. Durable and washable carbon nanotube-based fibers toward wearable thermoelectric generators application[J]. Journal of Power Sources, 2021, 496:229838.
doi: 10.1016/j.jpowsour.2021.229838 |
[45] | XU H, GUO Y, WU B, et al. Highly integrable thermoelectric fiber[J]. ACS Applied Materials & Interfaces, 2020, 12(29):33297-33304. |
[46] |
ZHENG Y, ZHANG Q, JIN W, et al. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics[J]. Journal of Materials Chemistry A, 2020, 8(6):2984-2994.
doi: 10.1039/C9TA12494B |
[47] |
CHEN H, ZHOU L, FANG Z, et al. Piezoelectric nanogenerator based on in situ growth all-inorganic CsPbBr3 perovskite nanocrystals in PVDF fibers with long-term stability[J]. Advanced Functional Materials, 2021, 31(19):2011073.
doi: 10.1002/adfm.v31.19 |
[48] |
KIM J H, KIM B, KIM S W, et al. High-performance coaxial piezoelectric energy generator (C-PEG) yarn of Cu/PVDF-TrFE/PDMS/Nylon/Ag[J]. Nanotechnology, 2021, 32(14):145401.
doi: 10.1088/1361-6528/abd57e |
[49] |
KIM H S, PARK I K. Enhanced output power from triboelectric nanogenerators based on electrospun Eu-doped polyvinylidene fluoride nanofibers[J]. Journal of Physics and Chemistry of Solids, 2018, 117:188-193.
doi: 10.1016/j.jpcs.2018.02.045 |
[50] |
DONG K, PENG X, AN J, et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing[J]. Nature Communications, 2020, 11(1):2868.
doi: 10.1038/s41467-020-16642-6 |
[51] |
CHEN L, CHEN C, JIN L, et al. Stretchable negative Poisson's ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor[J]. Energy and Environmental Science, 2021, 14(2):955-964.
doi: 10.1039/D0EE02777D |
[52] | SONG P, XI C, PREMLATHA S, et al. Sword/scabbard-shaped asymmetric all-solid-state supercapacitors based on PPy-MWCNTs-silk and hollow graphene tube for wearable applications[J]. Chemical Engineering Journal, 2021, 411:397-409. |
[53] |
ZANG X, LI L, MENG J, et al. Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control[J]. Journal of Materials Science and Technology, 2021, 74:52-59.
doi: 10.1016/j.jmst.2020.10.003 |
[54] |
WANG Y, CHEN C, XIE H, et al. 3D-printed all-fiber li-ion battery toward wearable energy storage[J]. Advanced Functional Materials, 2017, 27(43):1703140.
doi: 10.1002/adfm.v27.43 |
[1] | RONG Kai, FAN Wei, WANG Qi, ZHANG Cong, YU Yang. Application progress of two-dimensional transitional metal carbon/nitrogen compound composite in field of intelligent wearable textiles [J]. Journal of Textile Research, 2021, 42(09): 10-16. |
[2] | ZHENG Baoping, JIANG Gaoming, XIA Fenglin, ZHANG Aijun. Design of dynamic tension compensation system for warp knitting let-off based on model predictions [J]. Journal of Textile Research, 2021, 42(09): 163-169. |
[3] | CHEN Zujiao, ZHANG Rui, ZHUO Wenwen, ZHANG Longlin, ZHOU Li. Research progress in wearable plantar pressure monitoring system [J]. Journal of Textile Research, 2021, 42(09): 31-38. |
[4] | WAN Zhenkai, JIA Minrui, BAO Weichen. Optimal configuration of embedded position and number of carbon nanotube yarns in 3-D braided composites [J]. Journal of Textile Research, 2021, 42(09): 76-82. |
[5] | YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68. |
[6] | DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56. |
[7] | TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers [J]. Journal of Textile Research, 2021, 42(05): 168-177. |
[8] | XIAO Yuan, LI Hongying, LI Qian, ZHANG Wei, YANG Pengcheng. Preparation of flexible sensor with composite dielectric layer of cotton fabric/polydimethylsiloxane [J]. Journal of Textile Research, 2021, 42(05): 79-83. |
[9] | ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45. |
[10] | ZHOU Xinru, ZHOU Xiaoya, MA Yongjian, HU Chengye, ZHAO Xiaoman, HONG Jianhan, HAN Xiao. Preparation and pressure sensitivity of conductive polyaniline/polyurethane foam [J]. Journal of Textile Research, 2021, 42(04): 62-68. |
[11] | ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126. |
[12] | ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49. |
[13] | YU Jia, XIN Binjie, ZHUO Tingting, ZHOU Xi. Preparation and characterization of Cu/polypyrrole-coated wool fabrics for high electrical conductivity [J]. Journal of Textile Research, 2021, 42(01): 112-117. |
[14] | MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58. |
[15] | WANG Jilong, LIU Yan, JING Yuanyuan, XU Qingli, QIAN Xiangyu, ZHANG Yihong, ZHANG Kun. Advances in fiber-based wearable electronic devices [J]. Journal of Textile Research, 2020, 41(12): 157-165. |
|