Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 9-16.doi: 10.13475/j.fzxb.20210507308

• Fiber Materials • Previous Articles     Next Articles

Thickening behaviour and performance of titanium-based polyethylene terephthalate

LIN Qisong, GAO Feng, LÜ Wangyang, CHEN Wenxing()   

  1. National Engineering Laboratory for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-05-24 Revised:2021-11-17 Online:2022-07-15 Published:2022-07-29
  • Contact: CHEN Wenxing E-mail:wxchen@zstu.edu.cn

Abstract:

To extend the application of titanium-based polyethylene terephthalate (PET) in the manufacturing industrial polyester yarns, advanced polymer chromatography together with multi-angle laser light scattering was employed to research the thickening behaviour under various temperatures. A relationship between polycondensation temperature and molecular weight and its distribution of titanium-based PET were established. UV-Vis spectrophotometer and differential scanning calorimeter were used to study PET coloration with its thermal properties. The results indicate that molecular weight of the titanium-based PET increases as the polycondensation temperatures increase, and its coloration is obviously affected by the temperature. The required time for viscosity increasing decreases as the temperatures rise. The weight-average molecular weight for titanium-based PET obtained at 270 ℃ for 20 min reaction time is similar to that obtained at 220 ℃ for 10 h reaction time. It is shown that the elevated molecular weight leads to a decrease of PET crystalline performance and melt temperature. The molecular weight distribution becomes narrower when polycondensation temperature exceeds the melting temperature, and the molecular weight meets the requirements for industrial polyester yarns. The study on high molecular weight with narrow molecular weight distribution provides useful reference for making industrial polyester yarns.

Key words: industrial polyester yarn, titanium catalyst, melt polycondensation, thickening behaviour

CLC Number: 

  • TS15

Fig.1

UV-Vis spectra of titanium-based PET at different polycondensation temperatures. (a) Solid-state(reaction time 10 h);(b)Liquid-state(reaction time 60 min)"

Fig.2

Influence of reaction time on absorption value of titanium-based PET at 410 nm with polycondensation temperatures. (a) Solid-state(220 ℃); (b) Liquid-state(270 ℃)"

Tab.1

Molecular parameters and intrinsic viscosity for titanium-based PET with variety polycondensation conditions"

反应温度/℃ 特性黏度/(dL·g-1) 黏均分子量/(g·mol-1) 数均分子量/(g·mol-1) 重均分子量/(g·mol-1) 多分散指数
原样 0.676 18 960 22 780 36 970 1.623
210 0.791 22 960 26 780 44 500 1.661
220 0.880 26 150 31 510 51 680 1.640
230 0.959 29 040 42 460 66 280 1.599
240 0.986 30 020 38 090 69 890 1.835
250 1.002 30 610 45 110 78 650 1.743
260 1.104 34 470 35 530 66 030 1.859
270 1.054 32 560 39 590 68 090 1.720
280 1.080 33 560 44 890 68 830 1.533

Fig.3

Effect of reaction time on weight-average molecular weight evolution during polycondensation of titanium-based PET. (a) Solid-state(220 ℃); (b) Liquid-state(270 ℃)"

Fig.4

Molecular weight distribution curves of titanium-based PET after polycondensation at 270 ℃ with increasing react time. (a) Differential curves; (b) Integral curves"

Tab.2

Molecular parameters and intrinsic viscosity for titanium-based PET with reaction temperature of 270 ℃"

反应时间/min 特性黏度/(dL·g-1) 黏均分子量/(g·mol-1) 数均分子量/(g·mol-1) 重均分子量/(g·mol-1) 多分散指数
0 0.676 18 960 22 780 36 970 1.623
20 0.902 26 930 31 760 53 770 1.693
60 1.054 32 560 39 590 68 090 1.720
100 1.176 37 240 42 300 72 140 1.705
140 1.257 40 390 45 820 81 990 1.789

Fig.5

DSC secondary heating (a) and cooling (b) curves of titanium-based PET with different temperatures at a reaction time of 10 h with solid-state and 60 min with liquid-state"

Fig.6

DSC secondary heating (a) and cooling (b) curves of titanium-based PET after liquid-state polycondensation with different reaction time at a temperature of 270 ℃"

[1] SHOTYK W, KRACHLER M, CHEN B. Contamination of Canadian and European bottled waters with antimony from PET containers[J]. Journal of Environmental Monitoring, 2006, 8(2): 288-292.
doi: 10.1039/b517844b
[2] HANSEN H R, PERGANTIS S A. Detection of antimony species in citrus juices and drinking water stored in PET containers[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(8): 731-733.
doi: 10.1039/B606367E
[3] FINELLI L, LORENZETTI C, MESSORI M, et al. Comparison between titanium tetrabutoxide and a new commercial titanium dioxide based catalyst used for the synthesis of poly(ethylene terephthalate)[J]. Journal of Applied Polymer Science, 2004, 92(3): 1887-1892.
doi: 10.1002/app.20171
[4] XIN G, SUN B, WANG W, et al. In-situ formation of BHET/Titanium compound nanocomposite and its catalysis for polyester[J]. Macromolecular Symposia, 2007, 254(1): 173-179.
doi: 10.1002/masy.200750827
[5] STEPIEN' K, MILES C, MCCLAIN A, et al. Biocopolyesters of poly (butylene succinate) containing long-chain biobased glycol synthesized with heterogeneous titanium dioxide catalyst[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12 )
[6] LI X G, SONG G, HUANG M R. Cost-effective sustainable synthesis of high-performance high-molecular-weight poly (trimethylene terephthalate) by eco-friendly and highly active Ti/Mg catalysts[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2181-2195.
[7] YIN M, LI C, GUAN G, et al. Novel catalysts based on titanium dioxide/silicon dioxide for poly (ethylene terephthalate)[J]. Journal of Applied Polymer Science, 2010, 115(4): 2470-2478.
doi: 10.1002/app.30949
[8] 任丽萍, 周文乐, 谢在库. 钛系聚酯催化剂研究技术进展[J]. 合成纤维工业, 2005, 28(6): 48-51.
REN Liping, ZHOU Wenle, XIE Zaiku. Research progress in titanuim-containing catalyst for PET[J]. China Synthetic Fiber Industry, 2005, 28(6): 48-51.
[9] 宋云瑞, 张纪梅, 臧国强. 新型钛系聚酯催化剂的催化性能研究[J]. 合成纤维工业, 2014, 37(6):36-38.
SONG Yunrui, ZHANG Jimei, ZANG Guoqiang. Catalytic performance of novel titanium catalyst in polyethylene terephthalate synthesis[J]. China Synthetic Fiber Industry, 2014, 37(6):36-38.
[10] 章瑛虹, 熊金根, 周文乐, 等.钛系聚酯催化剂:20131051416516[P]. 2013-10-28.
ZHANG Yinghong, XIONG Jingen, ZHOU Wenle, et al. Titanium polyester catalyst: 20131051416516[P]. 2013-10-28.
[11] 王天兵, 胡舒龙, 陈红慧, 等. 环保型钛系催化剂在 PET直纺装置上的应用及探讨[J]. 聚酯工业, 2020, 33(2): 6-9.
WANG Tianbing, HU Shulong, CHEN Honghui, et al. Application and discussion of environmental protection titanium catalyst in pet direct spinning plant[J]. Polyester Industry, 2020, 33(2): 6-9.
[12] SCHEIRS J, LONG T. Mordern polyesters: chemistry and technology of polyesters and copolyesters[M]. Chichester: John Wiley & Sons Ltd, 2003: 166-175.
[13] 陈文兴, 马建平, 王建辉, 等. 涤纶工业丝液相增黏技术的研发[J]. 合成纤维工业, 2013, 36(3): 1-4.
CHEN Wenxing, MA Jianping, WANG Jianhui, et al. Research of liquid-state polycondensation technology for polyester industrial yarn[J]. China Synthetic Fiber Industry, 2013, 36(3): 1-4.
[14] 苑娜娟, 臧国强. 环保型钛系瓶级聚酯切片的研究[J]. 聚酯工业, 2018, 31(2): 1-5.
YUAN Najuan, ZANG Guoqiang. Research of environmental titanium system bottle-grade polyester chip[J]. Polyester Industry, 2018, 31(2): 1-5.
[15] 关震宇, 周文乐, 张玉梅, 等. 基于钛镁催化剂合成瓶用聚酯的动力学研究[J]. 纺织学报, 2021, 42(3): 64-70.
GUAN Zhenyu, ZHOU Wenle, ZHANG Yumei, et al. Kinetic study on synthesis of bottle polyester using Ti-Mg catalyst[J]. Journal of Textile Research, 2021, 42(3): 64-70.
[16] ZHAO Z, WU Y, WANG K, et al. Effect of the trifunctional chain extender on intrinsic viscosity, crystallization behavior, and mechanical properties of poly (ethylene terephthalate)[J]. ACS Omega, 2020, 5(30): 19247-19254.
doi: 10.1021/acsomega.0c02815
[17] YANG J, XIA Z, KONG F, et al. The effect of metal catalyst on the discoloration of poly(ethylene terephthalate) in thermo-oxidative degradation[J]. Polymer Degradation and Stability, 2010, 95(1): 53-58.
doi: 10.1016/j.polymdegradstab.2009.10.009
[18] 刘梅, 刘雄, 陈世昌, 等. 联合超高效聚合物色谱和激光光散射法的聚酯分子质量及其分布测定[J]. 纺织学报, 2016, 37(5): 11-16.
LIU Mei, LIU Xiong, CHEN Shichang, et al. Determination of polyester molecular weight and its distribution by advanced polymer chromatography and laser light scattering detection[J]. Journal of Textile Research, 2016, 37(5): 11-16.
doi: 10.1177/004051756703700102
[19] 朱永群. 粘度法测定PET分子量[J]. 合成纤维, 1988(1): 50-55.
ZHU Yongqun. Determination of PET molecular weight by measurement of viscosity[J]. Synthetic Fiber in China, 1988(1): 50-55.
[20] 卓俊谦. 聚酯瓶及其原料品质探讨[J]. 聚酯工业, 2005, 18(5): 10-14.
ZHUO Junqian. Quality discussion on PET bottle and its raw material[J]. Polyester Industry, 2005, 18(5): 10-14.
[21] MEDELLIN-RODRIGUEZ F, LOPEZ-GUILLEN R, WALDO-MENDOZA M. Solid-state polymerization and bulk crystallization behavior of poly(ethylene terephthalate)(PET)[J]. Journal of Applied Polymer Science, 2000, 75(1): 78-86.
doi: 10.1002/(SICI)1097-4628(20000103)75:1<78::AID-APP9>3.0.CO;2-E
[1] WAN Suying, BAO Jianna, WANG Ying, ZHANG Xianming, CHEN Shichang, YANG Zhichao, SHI Jiaoxue, CHEN Wenxing. Melt polycondensation and kinetics of phosphorus containing flame retardant copolyesters [J]. Journal of Textile Research, 2021, 42(11): 9-16.
[2] JIN Linlin, TIAN Junkai, LI Jiawei, QI Dongming, SHEN Xiaowei, WU Chuntao. Synthesis and properties of biodegradable polyglycolic acid oligomer modified polyester [J]. Journal of Textile Research, 2021, 42(01): 16-21.
[3] . Synthesis kinetics of polyester by organic titanium-silicon catalysts [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .