Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 75-80.doi: 10.13475/j.fzxb.20210600306

• Textile Engineering • Previous Articles     Next Articles

Preparation and properties of shape-memory composites reinforced by carbon fabrics

SU Ziyue1, SHAN Yingfa2, WU Yingzhu1(), QIN Jieyao1, PENG Meiting1, WANG Xiaomei1, HUANG Meilin1   

  1. 1. School of Textile Materials and Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
    2. Guangzhou Cndong Materials Co., Ltd., Guangzhou, Guangdong 510000, China
  • Received:2021-06-01 Revised:2022-05-10 Online:2022-11-15 Published:2022-12-26
  • Contact: WU Yingzhu E-mail:wuyingzhu111@163.com

Abstract:

In order to solve the impact of catalysts in a carbon fabric-based shape-memory composite system on its recycling performance, an epoxy-anhydride system (BMT) based on dynamic transesterification to provide the shape-memory function was adopted, and a polyhydroxy reactive monomer trimethylolpropane (TMP) as the reactive agent was combine with the carbon fabric to prepare a catalyst-free and regulable shape-memory composite. The results show that the polyhydroxy catalytic composite (C-BMT) not only displays a good shape-memory ability, and its physical properties are also excellent, especially its tensile strength is 24 time higher than that of the BMT system. In addition, there is no catalyst in the composite, which simplifies the recycling of the composites. The research is of great significance for the future development and for recycling of high-performance carbon fiber fabric matrix composites.

Key words: dynamic chemical bond, polyhydroxy catalysis, shape-memory, carbon fabric, composite

CLC Number: 

  • TB33

Tab.1

BMT curing system formulas with different molar ratios"

样品编号 BPA/moL MHHPA /moL TMP/moL
BMT-1 1 1 0.3
BMT-2 1 1 0.4
BMT-3 1 1 0.5

Fig.1

Test process of shape recovery rate"

Fig.2

Exothermic situation of BMT-3 system"

Tab.2

Thermogravimetric data corresponding to BMT system"

样品 BMT固化体系配比 Td5/℃
BMT-1 1/1/0.3 284
BMT-2 1/1/0.4 274
BMT-3 1/1/0.5 271

Fig.3

Thermogravimetric curve of BMT system"

Fig.4

Dissipation coefficient (a) and storage modulus (b) of BMT system"

Tab.3

Dynamic mechanical properties of BMT system"

样品 Eg/MPa Er /MPa Tg /℃
BMT-1 2 520 11.3 100
BMT-2 2 060 5.2 94
BMT-3 1 794 3.6 91

Fig.5

Stress relaxation (a) and self-repair (b) of BMT system"

Tab.4

Mechanical tensile properties of BMT system"

样品 拉伸强度/MPa 拉伸模量 /MPa 断裂伸长率/%
BMT-1 60 2400 4.55
BMT-2 54 2250 3.47
BMT-3 49 2180 3

Fig.6

Shape fixation rate of BMT system"

Tab.5

Shape recovery performance of BMT specimens (Tg+10 ℃)"

样品 形变回复时间/s 形变回复率/%
BMT-1 174 100
BMT-2 161 100
BMT-3 144 100

Tab.6

Deformation recovery time at different temperatures of BMT system"

样品 Tg /℃ (Tg+10)/℃ (Tg+20)/℃
BMT-1 190 174 157
BMT-2 180 161 143
BMT-3 157 144 135

Fig.7

Dissipation coefficient (a) and storage modulus (b) of C-BMT composite"

Tab.7

Mechanical tensile properties of C-BMT composite materials"

样品 拉伸强度/MPa 拉伸模量 /MPa 断裂伸长率/%
C-BMT-1 1 780 26 670 6.45
C-BMT-2 1 517 25 260 5.37
C-BMT-3 1 160 23 140 5.11
[1] 盛嘉喜. 碳纤维形状记忆复合材料的研制及其性能分析[D]. 南京: 南京理工大学, 2012:1-7.
SHENG Jiaxi. Development and performance analysis of carbon fiber shape memory composite materials[D]. Nanjing: Nanjing University of Science and Technology, 2012:1-7.
[2] BEHL M, LENDLEIN A. Shape-memory polymers[J]. Materials Today, 2007, 10(4): 20-28.
[3] ROUSSEAU I A. Challenges of shape memory polymers: a review of the progress toward overcoming SMP's limitations[J]. Polymer Engineering & Science, 2008, 48(11): 2075-2089.
[4] 戴春晖, 刘钧, 曾竟成, 等. 复合材料风电叶片的发展现状及若干问题的对策[J]. 玻璃钢/复合材料, 2008(1):53-56.
DAI Chunhui, LIU Jun, ZENG Jingcheng, et al. Development status of composite wind power blades and countermeasures to some problems[J]. Fiberglass/Composite Materials, 2008(1):53-56.
[5] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007(1):1-12.
DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae of Compositae Sinica, 2007(1): 1-12.
[6] 李晓晓. 基于交换酯键的可回收环氧树脂设计及其形状记忆性能研究[D]. 北京: 北京化工大学, 2018:1-51.
LI Xiaoxiao. Research on the design of recyclable epoxy resin based on exchange ester bond and its shape memory performance[D]. Beijing: Beijing University of Chemical Technology, 2018:1-51.
[7] BOWMAN C N, KLOXIN C J. Covalent adaptable networks: reversible bond structures incorporated in polymer networks[J]. Angewandte Chemie International Edition, 2012, 51(18): 4272-4274.
doi: 10.1002/anie.201200708
[8] MONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968.
doi: 10.1126/science.1212648 pmid: 22096195
[9] AMAMOTO Y, KIKUCHI M, MASUNAGA H, et al. Intelligent build-up of complementarily reactive diblock copolymers via dynamic covalent exchange toward symmetrical and miktoarm star-like nanogels[J]. Macromolecules, 2010, 43(4): 1785-1791.
doi: 10.1021/ma902413f
[10] WOJTECKI R J, MEADOR M A, ROWAN S J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers[J]. Nature Materials, 2011, 10(1): 14-27.
doi: 10.1038/nmat2891 pmid: 21157495
[11] 赖学平. 形状记忆环氧树脂的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2007:1-43.
LAI Xueping. Preparation and performance study of shape memory epoxy resin[D]. Harbin: Harbin Institute of Technology, 2007:1-43.
[12] FUKUDA H, KONDO A, NODA H. Biodiesel fuel production by transesterification of oils[J]. Journal of Bioscience and Bioengineering, 2001, 92(5): 405-416.
pmid: 16233120
[13] CHAKMA P, KONKOLEWICZ D. Dynamic covalent bonds in polymeric materials[J]. Angewandte Chemie International Edition, 2019, 58(29): 9682-9695.
doi: 10.1002/anie.201813525
[1] CHU Yanyan, LI Shichen, CHEN Chao, LIU Yingying, HUANG Weihan, ZHANG Yue, CHEN Xiaogang. Research progress in bulletproof flexible textile materials and structures [J]. Journal of Textile Research, 2022, 43(12): 203-212.
[2] ZHANG Shucheng, XING Jian, XU Zhenzhen. Preparation and properties of multilayer sound absorption materials based on waste polyphenylene sulfide filter materials [J]. Journal of Textile Research, 2022, 43(12): 35-41.
[3] JIN Guanxiu, ZHU Chengyan. Prediction of pore dimension in composite nonwovens based on image simulation and support vector machine [J]. Journal of Textile Research, 2022, 43(12): 75-81.
[4] ZHANG Wei, JIANG Zhe, XU Qi, SUN Baozhong. Fabrication and thermal-activated recovery properties of shape memory composite braided circular tubes [J]. Journal of Textile Research, 2022, 43(11): 68-74.
[5] ZHANG Zhiying, WANG Yiqiu, SUI Jianhua. Study of hollow honeycomb molded composites reinforced by ultra high molecular weight polyethylene fabrics [J]. Journal of Textile Research, 2022, 43(11): 81-87.
[6] ZHANG Yi, SHAO Lifeng, YANG Bin, GAO Jinxia, YU Chongwen. Acoustic properties of palm fiber felt/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) hot-pressed composites [J]. Journal of Textile Research, 2022, 43(10): 24-30.
[7] FANG Zhouqian, MIAO Peiyuan, JIN Xiaoke, ZHU Chengyan, TIAN Wei. Nondestructive testing on damage of carbon fiber composites using ultrasonic C-scanning [J]. Journal of Textile Research, 2022, 43(10): 71-76.
[8] XU Mingtao, JI Yu, ZHONG Yue, ZHANG Yan, WANG Ping, SUI Jianhua, LI Yuanyuan. Review on toughening modification of carbon fiber/epoxy resin composites [J]. Journal of Textile Research, 2022, 43(09): 203-210.
[9] HE Qi, LI Junling, JIN Gaoling, LIU Jin, KE Fuyou, CHEN Ye, WANG Huaping. Preparation and properties of tetrahydrofuran homopolyether-polybutyleneterephthalate/polyethylene terephthalate parallel composite fiber [J]. Journal of Textile Research, 2022, 43(09): 70-75.
[10] HU Chengye, ZHOU Xinru, FAN Mengjing, HONG Jianhan, LIU Yongkun, HAN Xiao, ZHAO Xiaoman. Preparation and properties of skin-core structure micro/nano fiber composite yarns [J]. Journal of Textile Research, 2022, 43(09): 95-100.
[11] YANG Honglin, XIANG Wei, DONG Shuxiu. Preparation and electromagnetic shielding properties of polyester fabric based nano-copper/reduced graphene oxide composites [J]. Journal of Textile Research, 2022, 43(08): 107-112.
[12] WANG Qiushi, HE Caiting, WANG Shan, CHEN Meiyu, LIANG Gaoyong, SUN Runjun. Research progress in fabric reinforced flexible stab-resistance composites [J]. Journal of Textile Research, 2022, 43(08): 183-188.
[13] GAO Feng, SUN Yanlin, XIAO Shunli, CHEN Wenxing, LÜ Wangyang. Microstructure and properties of polyester composite fibers with different drafting ratios [J]. Journal of Textile Research, 2022, 43(08): 34-39.
[14] SUN Xiaolun, CHEN Li, ZHANG Yifan, LI Mohan. Tensile properties of 3-D woven composites with holes [J]. Journal of Textile Research, 2022, 43(08): 74-79.
[15] WU Xia, YAO Juming, WANG Yan, RIPON Das, JIRI Militky, MOHANAPRIYA Venkataraman, ZHU Guocheng. Simulation and analysis of carbon fiber composite unmanned aerial vehicle blade [J]. Journal of Textile Research, 2022, 43(08): 80-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .